Antioxidant Properties of Pecan Shell Bioactive Components of Different Cultivars and Extraction Methods

Pecan shells are a rich source of various bioactive compounds with potential antioxidant and antimicrobial properties. This study investigated the effect of pecan variety and method extraction on the antioxidant property of shell extracts. Twenty different varieties of pecan shells were subjected to either aqueous or ethanolic extraction and were examined for total phenolics and antiradical activity. The phenolic content and antiradical activity of shell extracts were significantly (p < 0.05) varied with different pecan cultivars. The total phenolic content of ethanol extracts ranged from 304.2 (Caddo) to 153.54 (Cherokee) mg GAE/g of dry extract and was significantly greater (p < 0.05) than those obtained by aqueous extraction. The antiradical activity of ethanol extracts ranged from 840.6 (Maramec) to 526.74 (Caper Fear) mg TEg-1, while aqueous extracts ranged from 934.9 (Curtis) to 468.3 (Elliot) mg TEg-1. Chemical profiling of the crude and acid hydrolyzed extracts was performed by reverse phase high performance liquid chromatography and flow injection electrospray ionization mass spectrometry. Lignin degradation products such as lignols, dilignols, trilignols, and oligolignols were found to be the major components of tested extracts. Phenolic content and antiradical activity of pecan shell extracts are significantly varied with cultivars and methods of extraction.
https://doi.org/10.3390/foods10040713
 


Survey of Commercial Food Products for Detection of Walnut ( Juglans regia) by Two ELISA Methods and Real Time PCR

Labeling of food allergens in accordance with legal regulations is important to protect the health of allergic consumers. The requirements for detecting allergens in foods involve adequate specificity and sensitivity to identify very small amounts of the target allergens in complex food matrices and processed foods. In this work, one hundred commercial samples were analyzed for walnut detection using three different methods: a sandwich enzyme-linked immunosorbent assay (ELISA) kit based on polyclonal antibodies, a direct ELISA using a recombinant multimeric scFv, and a real time PCR. The most sensitive method was real time PCR followed by sandwich ELISA kit and multimeric scFv ELISA. There was agreement between the three methods for walnut detection in commercial products, except for some heat-treated samples or those that contained pecan. The walnut ELISA kit was less affected by sample processing than was the multimeric scFv ELISA, but there was cross-reactivity with pecan, producing some false positives that must be confirmed by real time PCR. According to the results obtained, 7.0 to 12.6% of samples (depending on the analytical method) contained walnut but did not declare it, confirming there is a risk for allergic consumers. Moreover, there was one sample (3.7%) labelled as containing walnut but that tested negative for this tree nut. Genetic and immunoenzymatic techniques offer complementary approaches to develop a reliable verification for walnut allergen labeling.
https://doi.org/10.3390/foods10020440
 


Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems

The study investigated the phenols, sugar and the antioxidant capacities of date fruit extracts obtained by organic solvents and by hydrothermal treatment from six different Algerian cultivars at two ripening stages for the first time. The analyzed cultivars exhibited potent antioxidant properties (ferric reducing antioxidant power (FRAP), 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacities) and different phenols regardless of the solvents and the maturity stages. About 18 phenols were identified and quantified, mainly in the hydrothermal extracts. The earlier stages were characterized by high amounts of o-coumaric acid, cinnamic acid and luteolin, with a noticeable absence of quercetin. The tamr stage presented the highest sugar content (78.15-86.85 mg/100 mg dry weight (DW)) with an abundance of glucose. Galactose was present only in some cultivars from the kimri stage (tamjouhert). Uronic acids were mostly detected at the tamr stage (4.02-8.82 mg gallic acid equivalent/100 mg dried weight). The obtained results highlight the potential of using date fruit extracts as natural antioxidants, especially at industrial scales that tend use hydrothermal extraction.
https://doi.org/10.3390/foods10030503
 


Rare Earths as Authenticity Markers for the Discrimination of Greek and Turkish Pistachios Using Elemental Metabolomics and Chemometrics

Pistachios are a nutritionally beneficial food source widely consumed all over the world. Pistachios exhibit high content of antioxidants, vitamins and other beneficial micronutrients, including nutrient elements and rare earth elements (REEs). Considering that the concentration of REEs depends on the climate and soil characteristics that vary among different geographical regions, REEs could constitute markers responsible for the geographical discrimination of this nut type. In this study, Greek pistachios with a protected designation of origin (PDO) label from Aegina Island and Fthiotida and Turkish pistachios from Adana were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to assess their REE profile. La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb were determined and quantified. The quantification results were further analyzed using the main effect plot, permutational analysis of variance (PERMANOVA), nonmetric multidimensional scaling (nMDS), principal component analysis (PCA) and hierarchical clustering (HCA) to investigate the similarities between the pistachios. A decision tree (DT) was developed for the classification of pistachios according to their geographical origin proving to be a promising and reliable tool for verifying the authenticity of food products on the basis of their REE profile.
 


Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation

Kernel oxidation susceptibility and pellicle darkening are among the biggest concerns regarding walnut quality. Monitoring oxidation is crucial to preserve quality from production to consumption. Chemical oxidation parameters (peroxide value and UV absorbances), fatty acid profile, tocopherols, phenols, and volatiles in 'Chandler' and 'Howard' kernels were studied at different time points during 28 weeks of storage to evaluate potential oxidation markers. During storage, peroxide value, UV absorbances, and volatiles concentration increased; oxidative stability, phenols, and tocopherols decreased, while fatty acid profile was unaffected. 'Chandler' had a lower peroxide value, K232, and K268; and higher kernel and oil oxidative stability compared to 'Howard'. Phenols and tocopherols decreased 1.2-fold in 'Chandler' and 1.3-fold in 'Howard'. Using multivariate analysis, samples were discriminated in three groups according with their oxidative levels. Increases of volatiles in oil and kernel were associated with higher oxidative levels. Pentanal, 2-methylpropanal, hexanal, (E)-2-pentenal, 3-octanone, octanal, (Z)-2-penten-1-ol, hexanol, (E)-2-octenal, 1-octen-3-ol, benzaldehyde, (E,E)-2,4-nonadienal, and hexanoic acid in kernels were adequate at distinguishing oxidation levels and as oxidative markers in walnuts. Kernel volatiles is a useful measurement for walnut oxidation during storage without any prior fat extraction.
 


Comparison of Microwave Short Time and Oven Heating Pretreatment on Crystallization of Raisins.

Crystalline material can develop on the surface of raisins during storage and transport, affecting the final acceptability of the product. In this work, a mild thermal pretreatment was applied to raisins to melt the pre-existing crystals and the effect of such thermal treatments on the development of crystals over a storage period was investigated. The raisins selected for this study were of the Thompson seedless variety from one Chilean company. The thermal pretreatment of raisins at 50 °C and 70 °C for 20 min in an oven and microwave (800 W) irradiation for 15 s resulted in a reduction in the percentage of crystallized raisins (w/w) from more than 50% in the control samples to less than 10% after 35 days of storage at 15 and 25 °C in a 57% relative humidity environment. The results showed that some textural parameters, such as cohesiveness and chewiness, were not affected by thermal treatment and were independent of storage temperature.


Determination of the Geographical Origin of Walnuts (Juglans regia L.) Using Near-Infrared Spectroscopy and Chemometrics.

The prices of walnuts vary according to their geographical origin and, therefore, offer a financial incentive for adulteration. A reliable analysis method is required to quickly detect possible misdeclarations and thus prevent food fraud. In this study, a method to distinguish between seven geographical origins of walnuts using Fourier transform near-infrared (FT-NIR) spectroscopy combined with chemometrics as a fast, versatile, and easy to handle analytical tool was developed. NIR spectra of 212 ground and afterwards freeze-dried walnut samples, harvested in three consecutive years (2017-2019), were collected. We optimized the data pre-processing by applying and evaluating 50,545 different pre-processing combinations, followed by linear discriminant analysis (LDA) which was confirmed by nested cross-validation. The results show that in the scope of our research minimal pre-processing led to the best results: By applying just multiplicative scatter correction (MSC) and median centering, a classification accuracy of 77.00% ± 1.60% was achieved. Consequently, this complex model can be used to answer economically relevant questions e.g., to distinguish between European and Chinese walnuts. Furthermore, the great influence of the applied pre-processing methods, e.g., the selected wavenumber range, on the achieved classification accuracy is shown which underlines the importance of optimization of the pre-processing strategy.


In Vitro Protein Digestibility and Fatty Acid Profile of Commercial Plant-Based Milk Alternatives.

Plant-based milk alternatives (PBMA) are a new popular food trend among consumers in Europe and North America. The forecast shows that PBMA will double their value by 2023. The objective of this study was to analyze the nutritional value of commercial products in terms of their fatty acid profile and protein digestibility from commercial PBMA. Eight commercially available PBMA were selected for fatty acid analysis, performed with gas chromatography of methylated fatty acids (GC-FAME), and, from these, four commercial products (almond drink, hemp drink, oat drink, and soy drink) were selected for a short-term in vitro protein digestibility (IVPD) analysis. The fatty acid analysis results showed that most of the products predominantly contained oleic acid (C18:1 ω-9) and linoleic acid (C18:2 ω-6). Hemp drink contained the highest omega-6/omega-3 (ω6/ω3) ratio among all tested products (3.43). Oat drink and almond drink were the PBMA with the highest short-term protein digestibility, non-significantly different from cow's milk, while soy drink showed the lowest value of protein digestibility. In conclusion, PBMA showed a significant variability depending on the plant source, both in terms of fatty acid composition and protein digestibility. These results provide more in-depth nutritional information, for future product development, and for consumer's choice.


The Effects of Pecan Shell, Roselle Flower and Red Pepper on the Quality of Beef Patties during Chilled Storage.

The antioxidant and antimicrobial effects of pecan shell (PSW), combined with roselle flower (RS) and red pepper (CA) were analyzed in beef patties by several methods during chilled storage for 13 days. Additionally, the antioxidant and antimicrobial activities of PSW, RS and CA extracts were determined. The PSW extract exhibited a higher radical scavenging activity (by the DPPH method) and more total phenolic compounds than RS and CA. RS presented the best antimicrobial capacity. Nine formulations of beef patties were prepared, including a control (CM), a synthetic preservative (CAMPA N.3 (A)) and different combinations of PSW, RS and CA. The bacterial counts of the beef patties with RS (4-5 log colony-forming units (CFU)/g meat) were significantly lower than those of the control sample (CM) (6-7 CFU/g meat) at day 6. The thiobarbituric acid-reactive substance (TBARS) values at day 7 of all treatments were similar to the values of samples containing the synthetic antioxidant and significantly lower than the CM group. The order of stability assessed by the TBARS values were in agreement with the hexanal content. Thus, these results support the hypothesis that the combination of PWS, RS and CA could represent a good natural food preservative.


Use of Almond Skins to Improve Nutritional and Functional Properties of Biscuits: An Example of Upcycling.

Upcycling food industry by-products has become a topic of interest within the framework of the circular economy, to minimize environmental impact and the waste of resources. This research aimed at verifying the effectiveness of using almond skins, a by-product of the confectionery industry, in the preparation of functional biscuits with improved nutritional properties. Almond skins were added at 10 g/100 g (AS10) and 20 g/100 g (AS20) to a wheat flour basis. The protein content was not influenced, whereas lipids and dietary fiber significantly increased (p < 0.05), the latter meeting the requirements for applying "source of fiber" and "high in fiber" claims to AS10 and AS20 biscuits, respectively. The addition of almond skins altered biscuit color, lowering L* and b* and increasing a*, but improved friability. The biscuits showed sensory differences in color, odor and textural descriptors. The total sum of single phenolic compounds, determined by HPLC, was higher (p < 0.05) in AS10 (97.84 µg/g) and AS20 (132.18 µg/g) than in control (73.97 µg/g). The antioxidant activity showed the same trend as the phenolic. The p-hydroxy benzoic and protocatechuic acids showed the largest increase. The suggested strategy is a practical example of upcycling when preparing a health-oriented food product.