Effect of pilot-scale high-temperature short-time processing on the retention of key micronutrients in a fortified almond-based beverage: implications for fortification of plant-based milk alternatives

The effect of thermal processing treatments on key micronutrients in fortified almond-based beverages has not been well characterized. An almond-based beverage was produced in a pilot plant, fortified with vitamin A palmitate, vitamin D2, riboflavin (vitamin B2), calcium carbonate, and zinc gluconate, and was processed using various high-temperature short-time (HTST) pasteurization treatments. Naturally present micronutrients in the base ingredients included several B vitamins (vitamin B1 [thiamin], total vitamin B3 [sum of nicotinamide and nicotinic acid], and total vitamin B6 [sum of pyridoxal, pyridoxamine, and pyridoxine]) and minerals (magnesium, phosphorus, and potassium). The prepared almond-based beverage was homogenized and thermally processed using HTST pasteurization with a temperature range from ~94 to 116°C for a constant time of 30 s. The samples were analyzed for vitamin A palmitate, vitamin D2, target B vitamins (thiamin, riboflavin, total vitamin B3, and total vitamin B6), and minerals (magnesium, phosphorus, potassium, calcium, and zinc). The results showed that amounts of vitamin A, vitamin D2, riboflavin, and total vitamin B6 did not significantly (p > 0.05) change after the HTST treatments, whereas thiamin significantly (p < 0.05) decreased by 17.9% after HTST treatment at 116°C. Interestingly, total vitamin B3 content significantly (p < 0.05) increased by 35.2% after HTST treatment at 116°C. There was no effect of processing on the minerals that were monitored. The results from this study indicate that the majority of key micronutrients assessed in this study are stable during HTST processing of an almond-based beverage and that fortification of plant-based milk alternatives may be a viable process to enhance the micronutrient content consumers receive from these products. https://doi.org/10.3389/fnut.2024.1468828


Cashew nut (Anacardium occidentale L.) and cashew nut oil reduce cardiovascular risk factors in adults on weight-loss treatment: a randomized controlled three-arm trial (Brazilian Nuts Study)

Introduction: Cashew nut contains bioactive compounds that modulate satiety and food intake, but its effects on body fat during energy restriction remains unknown. This study aimed to assess the effects of cashew nut and cashew nut oil on body fat (primary outcome) as well as adiposity, cardiometabolic and liver function markers (secondary outcomes). Materials and methods: An eight-week (8-wk) randomized controlled-feeding study involved 68 adults with overweight/obesity (40 women, BMI: 33 ± 4 kg/m2). Participants were randomly assigned to one of the energy-restricted (−500 kcal/d) groups: control (CT, free-nuts), cashew nut (CN, 30 g/d), or cashew nut oil (OL, 30 mL/d). Body weight, body composition, and blood collection were assessed at the baseline and endpoint of the study. Results: After 8-wk, all groups reduced significantly body fat (CT: −3.1 ± 2.8 kg; CN: −3.3 ± 2.7 kg; OL: −1.8 ± 2.6 kg), body weight (CT: −4.2 ± 3.8 kg; CN: −3.9 ± 3.1 kg; OL: −3.4 ± 2.4 kg), waist (CT: −5.1 ± 4.6 cm; CN: −3.9 ± 3.9 cm; OL: −3.7 ± 5.3 cm) and hip circumferences (CT: −2.9 ± 3.0 cm; CN: −2.7 ± 3.1 cm; OL: −2.9 ± 2.3 cm). CN-group reduced liver enzymes (AST: −3.1 ± 5.3 U/L; ALT: −6.0 ± 9.9 U/L), while the OL-group reduced LDL-c (−11.5 ± 21.8 mg/dL) and atherogenic index (−0.2 ± 0.5). Both intervention groups decreased neck circumference (CN: −1.0 ± 1.2 cm; OL: −0.5 ± 1.2 cm) and apo B (CN: −6.6 ± 10.7 mg/dL; OL: −7.0 ± 15.3 mg/dL). Conclusion: After an 8-wk energy-restricted intervention, all groups reduced body fat (kg), weight, and some others adiposity indicators, with no different effect of cashew nut or cashew nut oil. However, participants in the intervention groups experienced additional reductions in atherogenic marker, liver function biomarkers, and cardiovascular risk factors (neck circumference and apo B levels), with these effects observed across the OL group, CN group, and both intervention groups, respectively. https://doi.org/10.3389/fnut.2024.1407028


Combination of Walnut Peptide and Casein Peptide alleviates anxiety and improves memory in anxiety mices.

Introduction: Anxiety disorders continue to prevail as the most prevalent cluster of mental disorders following the COVID-19 pandemic, exhibiting substantial detrimental effects on individuals' overall well-being and functioning. Even after a search spanning over a decade for novel anxiolytic compounds, none have been approved, resulting in the current anxiolytic medications being effective only for a specific subset of patients. Consequently, researchers are investigating everyday nutrients as potential alternatives to conventional medicines. Our prior study analyzed the antianxiety and memory-enhancing properties of the combination of Walnut Peptide (WP) and Casein Peptide (CP) in zebrafish. Methods and results: Based on this work, our current research further validates their effects in mice models exhibiting elevated anxiety levels through a combination of gavage oral administration. Our results demonstrated that at 170 + 300 mg human dose, the WP + CP combination significantly improved performances in relevant behavioral assessments related to anxiety and memory. Furthermore, our analysis revealed that the combination restores neurotransmitter dysfunction observed while monitoring Serotonin, gamma-aminobutyric acid (GABA), dopamine (DA), and acetylcholine (ACh) levels. This supplementation also elevated the expression of brain-derived neurotrophic factor mRNA, indicating protective effects against the neurological stresses of anxiety. Additionally, there were strong correlations among behavioral indicators, BDNF (brain-derived neurotrophic factor), and numerous neurotransmitters. Conclusion: Hence, our findings propose that the WP + CP combination holds promise as a treatment for anxiety disorder. Besides, supplementary applications are feasible when produced as powdered dietary supplements or added to common foods like powder, yogurt, or milk.

https://doi.org/10.3389/fnut.2023.1273531


The role of intestinal microbiota and microRNAs in the anti-inflammatory effects of cranberry: from pre-clinical to clinical studies

Cranberries have known anti-inflammatory properties, which extend their benefits in the context of several chronic diseases. These benefits highly rely on the polyphenol profile of cranberries, one of few foods rich in A-type proanthocyanidin (PAC). A-type PAC comprises flavan-3-ol subunits with an additional interflavan ether bond in the conformational structure of the molecule, separating them from the more commonly found B-type PAC. PACs with a degree of polymerization higher than three are known to reach the colon intact, where they can be catabolyzed by the gut microbiota and biotransformed into lower molecular weight organic acids that are available for host absorption. Gut microbiota-derived metabolites have garnered much attention in the past decade as mediators of the health effects of parent compounds. Though, the mechanisms underlying this phenomenon remain underexplored. In this review, we highlight emerging evidence that postulates that polyphenols, including ones derived from cranberries, and their metabolites could exert anti-inflammatory effects by modulating host microRNAs. Our review first describes the chemical structure of cranberry PACs and a pathway for how they are biotransformed by the gut microbiota. We then provide a brief overview of the benefits of microbial metabolites of cranberry in the intestinal tract, at homeostasis and in inflammatory conditions. Finally, we discuss the role of microRNAs in intestinal health and in response to cranberry PAC and how they could be used as targets for the maintenance of intestinal homeostasis. Most of this research is pre-clinical and we recognize that conducting clinical trials in this context has been hampered by the lack of reliable biomarkers. Our review discusses the use of miRNA as biomarkers in this context. https://doi.org/10.3389/fnut.2023.1092342


A comparison of the nutritional profile and nutrient density of commercially available plant-based and dairy yogurts in the United States

Introduction: Plant-based yogurts are sustainable alternatives to dairy yogurts, but a nutritional comparison of plant-based yogurts within the context of dairy yogurts has not yet been applied to commercially available products in the United States. Dairy yogurts provide significant dietary nutrients, and substituting plant-based yogurts may have unintended nutritional consequences. The objective of this study was to compare the macronutrient and micronutrient values of commercially available plant-based and dairy yogurts launched between 2016 and 2021. Methods: Nutritional information for yogurts were collected through Mintel Global New Products Database, and products were categorized according to their primary ingredient. Regular-style yogurts (n = 612) were included in this study: full-fat dairy (n = 159), low and nonfat dairy (n = 303), coconut (n = 61), almond (n = 44), cashew (n = 30), and oat (n = 15). We utilized the Nutrient Rich Foods (NRF) Index, a comprehensive food guidance system that assigns a score based on the nutrient density of individual foods. This allowed us to compare the nutritional density of the yogurts based on nutrients to encourage (protein, fiber, calcium, iron, potassium, vitamin D) and nutrients to limit (saturated fat, total sugar, sodium). Results: Compared to dairy yogurts, plant-based yogurts contained significantly less total sugar, less sodium, and more fiber. However, plant-based yogurts contained significantly less protein, calcium, and potassium than dairy yogurts. The yogurts were ranked from the highest to lowest nutrient density based on the NRF Index as follows: almond, oat, low and nonfat dairy, full-fat dairy, cashew, and coconut. Almond yogurts scored significantly higher than all other yogurts, indicating the highest nutrient density. Discussion: The highest NRF scores were awarded to almond and oat yogurts, likely a result of their low levels of total sugar, sodium, and saturated fat. By applying the NRF model to plant-based and dairy yogurts, we have identified opportunities for the food industry to improve the formulation and nutritional composition of plant-based yogurts. In particular, fortification is an opportunity to improve plant-based yogurt nutritional properties. https://doi.org/10.3389/fnut.2023.1195045


Effect of almond consumption on insulin sensitivity and serum lipids among Asian Indian adults with overweight and obesity– A randomized controlled trial.

 

Background: Asian Indians have an increased susceptibility to type 2 diabetes and premature coronary artery disease. Nuts, like almonds, are rich in unsaturated fat and micronutrients with known health benefits. Objectives: This study aimed to assess the efficacy of almonds for reduction of insulin resistance and improving lipid profile in overweight Asian Indian adults. Methods: This parallel-arm, randomized, controlled trial was conducted in Chennai, India on 400 participants aged 25–65 years with a body mass index ≥ 23 kg/m2. The intervention group received 43 g of almonds/day for 12 weeks, while the control group was advised to consume a customary diet but to avoid nuts. Anthropometric, clinical, and dietary data were assessed at periodic intervals. Glucose tolerance, serum insulin, glycated hemoglobin, C-peptide and lipid profile were assessed at baseline and end of the study. Insulin resistance (homeostasis assessment model-HOMA IR) and oral insulin disposition index (DIo) were calculated. Results: A total of 352 participants completed the study. Significant improvement was seen in DIo [mean (95% CI) = + 0.7 mmol/L (0.1, 1.3); p = 0.03], HOMA IR (−0.4 (−0.7, −0.04; p = 0.03) and total cholesterol (−5.4 mg/dl (−10.2, −0.6); p = 0.03) in the intervention group compared to the control group. Incremental area under the curve (IAUC) and mean amplitude of glycemic excursion (MAGE) assessed using continuous glucose monitoring systems were also significantly lower in the intervention group. Dietary 24-h recalls showed a higher significant reduction in carbohydrate and increase in mono unsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA) intake in the intervention group compared to the control group. Conclusion: Daily consumption of almonds increased the intake of MUFA with decrease in carbohydrate calories and decreases insulin resistance, improves insulin sensitivity and lowers serum cholesterol in Asian Indians with overweight/obesity. These effects in the long run could aid in reducing the risk of diabetes and other cardiometabolic disease. https://doi.org/10.3389/fnut.2022.1055923


Microwave-assisted extraction of cellulose nanocrystals from almond (Prunus amygdalus) shell waste.

Almond (Prunus amygdalus) is one of the most common tree nuts on a worldwide basis. This nut is highly regarded in the food and cosmetic industries. However, for all these applications, almonds are used without their shell protection, which is industrially removed contributing approximately 35-75% of the total fruit weight. This residue is normally incinerated or dumped, causing several environmental problems. In this study, a novel cellulose nanocrystal (CNCs) extraction procedure from almond shell (AS) waste by using microwave-assisted extraction was developed and compared with the conventional approach. A three-factor, three-level Box-Behnken design with five central points was used to evaluate the influence of extraction temperature, irradiation time, and NaOH concentration during the alkalization stage in crystallinity index (CI) values. A similar CI value (55.9 ± 0.7%) was obtained for the MAE process, comprising only three stages, compared with the conventional optimized procedure (55.5 ± 1.0%) with five stages. As a result, a greener and more environmentally friendly CNC extraction protocol was developed with a reduction in time, solvent, and energy consumption. Fourier transform infrared (FTIR) spectra, X-ray diffractogram (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) images, and thermal stability studies of samples confirmed the removal of non-cellulosic components after the chemical treatments. TEM images revealed a spherical shape of CNCs with an average size of 21 ± 6 nm, showing great potential to be used in food packaging, biological, medical, and photoelectric materials. This study successfully applied MAE for the extraction of spherical-shaped CNCs from AS with several advantages compared with the conventional procedure, reducing costs for industry. https://doi.org/10.3389/fnut.2022.1071754


Almond intake alters the acute plasma dihydroxy-octadecenoic acid (DiHOME) response to eccentric exercise.

Introduction: This investigation determined if 4-weeks ingestion of nutrient-dense almonds mitigated post-exercise inflammation and muscle soreness and damage. Methods: An acute 90-min of eccentric exercise (90-EE) was used to induce muscle damage in 64 non-obese adults not engaging in regular resistance training (ages 30–65 years, BMI < 30 kg/m2). Using a parallel group design, participants were randomized to almond (AL) (57 g/d) or cereal bar (CB) (calorie matched) treatment groups for a 4-week period prior to the 90-EE (17 exercises). Blood and 24-h urine samples were collected before and after supplementation, with additional blood samples collected immediately post-90-EE, and then daily during 4 additional days of recovery. Changes in plasma oxylipins, urinary gut-derived phenolics, plasma cytokines, muscle damage biomarkers, mood states, and exercise performance were assessed. Results: The 90-EE protocol induced significant muscle damage, delayed onset of muscle soreness (DOMS), inflammation, reduced strength and power performance, and mood disturbance. Interaction effects (2 group × 7 time points) supported that AL vs. CB was associated with reduced post-exercise fatigue and tension (p = 0.051, 0.033, respectively) and higher levels of leg-back strength (p = 0.029). No group differences were found for post-90-EE increases in DOMS and six cytokines. AL was associated with lower levels of serum creatine kinase immediately- and 1-day post-exercise (p = 0.034 and 0.013, respectively). The 90-EE bout increased plasma levels immediately post-exercise for 13 oxylipins. Interaction effects revealed significantly higher levels for AL vs. CB for 12,13-DiHOME (p < 0.001) and lower levels for 9,10-DiHOME (p < 0.001). Urine levels increased in AL vs. CB for seven gut-derived phenolics including 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone that was inversely related to changes in plasma 9,10-DiHOME (r = −0.029, p = 0.021). Discussion: These data support some positive effects of almond intake in improving mood state, retaining strength, decreasing muscle damage, increasing the generation of gut-derived phenolic metabolites, and altering the plasma oxylipin DiHOME response to unaccustomed eccentric exercise in untrained adults. The elevated post-exercise plasma levels of 12,13-DiHOME with almond intake support positive metabolic outcomes for adults engaging in unaccustomed eccentric exercise bouts. https://doi.org/10.3389/fnut.2022.1042719

 


Chronic Consumption of Cranberries (Vaccinium macrocarpon) for 12 Weeks Improves Episodic Memory and Regional Brain Perfusion in Healthy Older Adults: A Randomised, Placebo-Controlled, Parallel-Groups Feasibility Study.

Background: Ageing is highly associated with cognitive decline and modifiable risk factors such as diet are believed to protect against this process. Specific dietary components and in particular, (poly)phenol-rich fruits such as berries have been increasingly recognised for their protection against age-related neurodegeneration. However, the impact of cranberries on cognitive function and neural functioning in older adults remains unclear. Design: A 12-week parallel randomised placebo-controlled trial of freeze-dried cranberry powder was conducted in 60 older adults aged between 50 and 80 years. Cognitive assessment, including memory and executive function, neuroimaging and blood sample collection were conducted before and after the intervention to assess the impact of daily cranberry consumption on cognition, brain function and biomarkers of neuronal signalling. Results: Cranberry supplementation for 12 weeks was associated with improvements in visual episodic memory in aged participants when compared to placebo. Mechanisms of action may include increased regional perfusion in the right entorhinal cortex, the accumbens area and the caudate in the cranberry group. Significant decrease in low-density lipoprotein (LDL) cholesterol during the course of the intervention was also observed. No significant differences were, however, detected for BDNF levels between groups. Conclusions: The results of this study indicate that daily cranberry supplementation (equivalent to 1 small cup of cranberries) over a 12-week period improves episodic memory performance and neural functioning, providing a basis for future investigations to determine efficacy in the context of neurological disease. This trial was registered at clinicaltrials.gov as NCT03679533 and at ISRCTN as ISRCTN76069316. https://doi.org/10.3389/fnut.2022.849902
 


The Effects of Peanuts and Tree Nuts on Lipid Profile in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized, Controlled-Feeding Clinical Studies

Background: Type 2 diabetes mellitus was found to be associated with metabolic disorders, particularly abnormal glucose and lipid metabolism. Dietary food choices may have profound effects on blood lipids. The primary objective of this study was to examine the effects of peanuts and tree nuts intake on lipid profile in patients with type 2 diabetes. Methods: According to preferred reporting items for systematic reviews and meta-analysis guidelines, we performed a systematic search of randomized controlled clinical trials and systematic reviews published in PubMed, Web of Science, Embase, Scopus, and Cochrane library, from inception through June 2021. Studies in populations with type 2 diabetes, which compare nuts or peanuts to a controlled-diet group were included. We used the mean difference with 95% CIs to present estimates for continuous outcomes from individual studies. In addition, we used the GRADEpro tool to evaluate the overall quality of evidence. Conclusion: Our findings suggest that consuming peanuts and tree nuts might be beneficial to lower TC concentration and TG concentration in type 2 diabetics subjects. Furthermore, peanuts and tree nuts supplementation could be considered as a part of a healthy lifestyle in the management of blood lipids in patients with type 2 diabetes. Given some limits observed in the current studies, more well-designed trials are still needed. https://doi.org/10.3389/fnut.2021.765571