Effects of Longer-Term Mixed Nut Consumption on Lipoprotein Particle Concentrations in Older Adults with Overweight or Obesity
Background: Recently, we reported that longer-term mixed nut intake significantly reduced serum total and low-density lipoprotein (LDL)-cholesterol, but these markers may not fully capture lipoprotein-related cardiovascular disease (CVD) risk. Objectives: This randomized, controlled, single-blinded, crossover trial in older adults with overweight or obesity examined the effects of longer-term mixed nut consumption on lipoprotein particle size, number, and lipid distribution. Methods: Twenty-eight participants (aged 65 ± 3 years; BMI 27.9 ± 2.3 kg/m2) completed two 16-week periods (control [no nuts] vs. mixed nuts (60 g/day: 15 g of walnuts, pistachios, cashews, and hazelnuts), separated by an 8-week washout. Plasma lipoprotein particle numbers, sizes, and lipid distributions across subclasses were analyzed using high-throughput nuclear magnetic resonance (NMR) spectroscopy. Results: Mixed nut consumption significantly reduced Apolipoprotein B (ApoB) concentrations (−0.07 g/L; p = 0.009), total cholesterol (−0.27 mmol/L; p = 0.047), non-HDL cholesterol (−0.28 mmol/L; p = 0.022), and total triacylglycerol (TAG) (−0.27 mmol/L; p = 0.008). Total very large-density lipoprotein (VLDL) particle numbers decreased by 24 nmol/L (p < 0.001), with reductions observed across all VLDL subclasses. Total LDL particle numbers (p = 0.044), specifically intermediate-density lipoprotein (IDL) (p = 0.002) and large LDL particles (p = 0.015), were also reduced, while HDL particle numbers and sizes were unaffected. The mixed nut intervention significantly reduced cholesterol concentrations across all VLDL subclasses and IDL (all p < 0.01), with no changes in LDL or HDL subclasses. TAG concentrations showed reductions across all lipoprotein subclasses (all p < 0.05). Conclusions: Longer-term mixed nut consumption may lower CVD risk in older adults and favorable shifts in apoB-containing lipoprotein subclasses towards a less atherogenic profile.
https://doi.org/10.3390/nu17010008
Tree Nut Allergy in Children—What Do We Know? —A Review
Food allergy represents a significant public health concern, with its prevalence increasing in recent decades. Tree nuts are among major allergenic foods, and allergies to them are frequently linked to severe and potentially life-threatening reactions. Data on the prevalence and natural history of tree nut allergy are limited. Primary nut allergy typically presents with rapid-onset IgE-mediated symptoms. Diagnosis can be confirmed by demonstrating a positive skin prick test (SPT), specific IgE (sIgE), or through an oral food challenge. Component-resolved diagnostics (CRD) can identify those with a high risk of anaphylaxis. The main management strategy involves avoiding the culprit allergen and treating symptoms after accidental exposure. New therapeutic options, such as sublingual immunotherapy, oral food immunotherapy, with or without omalizumab, and other monoclonal antibodies, are being investigated to modify tree nut allergy. Tree nut allergy is a lifelong disease with a low likelihood of resolution. The aim of this paper is to present the current data on the prevalence, diagnosis, natural history, and management options for tree nut allergy.
https://doi.org/10.3390/nu16233978
Regulation of Intestinal Inflammation by Walnut-Derived Bioactive Compounds
Walnuts (Juglans regia L.) have shown promising effects in terms of ameliorating inflammatory bowel disease (IBD), attributed to their abundant bioactive compounds. This review comprehensively illustrates the key mechanisms underlying the therapeutic potential of walnuts in IBD management, including the modulation of intestinal mucosa permeability, the regulation of inflammatory pathways (such as NF-kB, COX/COX2, MAPCK/MAPK, and iNOS/NOS), relieving oxidative stress, and the modulation of gut microbiota. Furthermore, we highlight walnut-derived anti-inflammatory compounds, such as polyunsaturated fatty acids (PUFA; e.g., ω-3 PUFA), tocopherols, phytosterols, sphingolipids, phospholipids, phenolic compounds, flavonoids, and tannins. We also discuss unique anti-inflammatory compounds such as peptides and polysaccharides, including their extraction and preparation methods. Our review provides a theoretical foundation for dietary walnut supplementation in IBD management and provides guidance for academia and industry. In future, research should focus on the targeted isolation and purification of walnut-derived anti-inflammatory compounds or optimizing extraction methods to enhance their yields, thereby helping the food industry to develop dietary supplements or walnut-derived functional foods tailored for IBD patients. https://doi.org/10.3390/nu16162643
The Effects of Almond Consumption on Cardiovascular Health and Gut Microbiome: A Comprehensive Review
The consumption of almonds has been associated with several health benefits, particularly concerning cardiovascular and intestinal health. In this comprehensive review, we compile and deliberate studies investigating the effects of almond consumption on cardiovascular disease (CVD) risk factors and gut health. Almonds are rich in monounsaturated fats, fiber, vitamins, minerals, and polyphenols, which contribute to their health-promoting properties. Regular intake of almonds has been shown to improve lipid profiles by reducing LDL cholesterol and enhancing HDL functionality. Additionally, almonds aid in glycemic control, blood pressure reduction, and chronic inflammation amelioration, which are critical for cardiovascular health. The antioxidant properties of almonds, primarily due to their high vitamin E content, help in reducing oxidative stress markers. Furthermore, almonds positively influence body composition by reducing body fat percentage and central adiposity and enhancing satiety, thus aiding in weight management. Herein, we also contemplate the emerging concept of the gut–heart axis, where almond consumption appears to modulate the gut microbiome, promoting the growth of beneficial bacteria and increasing short-chain fatty acid production, particularly butyrate. These effects collectively contribute to the anti-inflammatory and cardioprotective benefits of almonds. By encompassing these diverse aspects, we eventually provide a systematic and updated perspective on the multifaceted benefits of almond consumption for cardiovascular health and gut microbiome, corroborating their broader consideration in dietary guidelines and public health recommendations for CVD risk reduction. https://doi.org/10.3390/nu16121964
Identification of New Allergens in Macadamia Nut and Cross-Reactivity with Other Tree Nuts in a Spanish Cohort
The consumption of macadamia nuts has increased due to their cardioprotective and antioxidant properties. However, this rise is consistent with an increase in the cases of macadamia nut allergy, leading to severe reactions. Although two Macadamia integrifolia allergens (Mac i 1 and Mac i 2) have been identified in Australian and Japanese patients, the allergenic sensitization patterns in Western European populations, particularly in Spain, remain unclear. For this purpose, seven patients with macadamia nut allergy were recruited in Spain. Macadamia nut protein extracts were prepared and, together with hazelnut and walnut extracts, were used in Western blot and inhibition assays. IgE-reactive proteins were identified using MALDI-TOF/TOF mass spectrometry (MS). Immunoblotting assays revealed various IgE-binding proteins in macadamia nut extracts. Mass spectrometry identified three new allergens: an oleosin, a pectin acetylesterase, and an aspartyl protease. Cross-reactivity studies showed that hazelnut extract but not walnut extract inhibited macadamia nut oleosin-specific IgE binding. This suggests that oleosin could be used as marker for macadamia–hazelnut cross-reactivity. The results show an allergenic profile in the Spanish cohort different from that previously detected in Australian and Japanese populations. The distinct sensitization profiles observed highlight the potential influence of dietary habits and environmental factors exposure on allergenicity.
https://doi.org/10.3390/nu16070947
Bean and Nut Intake Were Protective Factors for Comorbid Hypertension and Hyperuricemia in Chinese Adults: Results from China Nutrition and Health Surveillance (2015-2017)
This study aimed to describe the prevalence of comorbid hypertension and hyperuricemia (HH) and detected the dietary factors for HH in Chinese adults aged 18 to 64 years. All of the data were collected from the China Nutrition and Health Surveillance 2015–2017, with a stratified, multistage, random sampling method on a national scale. A total of 52,627 adult participants aged 18~64 years from the CNHS 2015–2017 were included in this study. HH was identified as SUA level cut-offs for males and females of 420 μmol/L and 360 μmol/L, respectively, with mean systolic blood pressure ≥140 mmHg and/or mean diastolic blood pressure ≥ 90 mmHg and/or received antihypertensive treatment within two weeks. The differences in HH prevalence between or among the subgroups were compared by the Rao–Scott chi-square test. The correlations between HH and covariates or metabolic factors were detected by a weighted two-level multivariate survey logistic regression. The total weighted sufficient intake ratios of beans and nuts, vegetables, and red meat were 59.1%, 46.6%, and 64.8%, respectively. The weighted prevalence of HH in the total participants was 4.7% (95% CI: 4.3–5.0%). The positive effects of bean and nut on HH were observed. The participants who had sufficient bean and nut intake showed lower risk for HH (for the total participants: OR = 0.734, 95% CI = 0.611–0.881). The prevalence of HH might have been a public health problem, and bean and nut intake might be a protective factor for HH in the Chinese population. https://doi.org/10.3390/nu16020192
A Dietary Model of Partial Meat Replacement with Walnuts Demonstrates Changes in the Nutrient Profile and Quality of the United States Population's Diet
The purpose of the study is to assess the impact of partial meat replacement with walnuts using a dose-escalation approach on nutrient intake and diet quality in the usual US diet. Food modeling was implemented using the nationally representative 2015-2018 National Health and Examination Survey (NHANES), with a focus on non-nut consumers, which included 2707 children and adolescents and 5190 adults. Walnuts replaced meat in a dose-escalating manner (0.5, 1, 1.5, and 2 oz walnuts per day replaced 1, 2, 3, and 4 oz meat, respectively). Diet quality was estimated using the population ratio method of the 2015 Healthy Eating Index. The usual intake of nutrients was estimated using the National Cancer Institute method. Significant differences were determined using non-overlapping 95% confidence intervals. The partial replacement of meat with walnuts demonstrated significant increases in the mean intake of fiber, magnesium, and omega-3 fatty acids and significant decreases in cholesterol and vitamin B12 in the modeled diets for children, adolescents, and adults. Additionally, the partial replacement of meat with walnuts improved overall diet quality. Walnut consumption at 1-2 oz as a replacement for some meat may improve nutrient intake and diet quality across age groups. https://doi.org/10.3390/nu15214518
Consumption of tree nuts as snacks reduces metabolic syndrome risk in young adults: A randomized trial
Metabolic syndrome (MetSx) and its chronic disease consequences are major public health concerns worldwide. Between-meal snacking may be a modifiable risk factor. We hypothesized that consuming tree nuts as snacks, versus typical carbohydrate snacks, would reduce risk for MetSx in young adults. A prospective, randomized, 16-week parallel-group diet intervention trial was conducted in 84 adults aged 22–36 with BMI 24.5 to 34.9 kg/m2 and ≥1 MetSx clinical risk factor. Tree nuts snacks (TNsnack) were matched to carbohydrate snacks (CHOsnack) for energy (kcal), protein, fiber, and sodium content as part of a 7-day eucaloric menu. Difference in change between groups was tested by analysis of covariance using general linear models. Multivariable linear regression modeling assessed main effects of TNsnack treatment and interactions between TNsnack and sex on MetSx score. Age, BMI, and year of study enrollment were included variables. There was a main effect of TNsnack on reducing waist circumference in females (mean difference: −2.20 ± 0.73 cm, p = 0.004) and a trend toward reduced visceral fat (−5.27 ± 13.05 cm2, p = 0.06). TNsnack decreased blood insulin levels in males (−1.14 ± 1.41 mIU/L, p = 0.05) and multivariable modeling showed a main effect of TNsnack on insulin. Main effects of TNsnack on triglycerides and TG/HDL ratio were observed (p = 0.04 for both) with TG/HDL ratio reduced ~11%. A main effect of TNsnack (p = 0.04) and an interaction effect between TNsnack and sex (p < 0.001) on total MetSx score yielded 67% reduced MetSx score in TNsnack females and 42% reduced MetSx score in TNsnack males. To our knowledge, this is the first randomized parallel-arm study to investigate cardiometabolic responses to TNsnacks versus typical CHOsnacks among young adults at risk of MetSx. Our study suggests daily tree nut consumption reduces MetSx risk by improving waist circumference, lipid biomarkers, and/or insulin sensitivity—without requiring caloric restriction.
https://doi.org/10.3390/nu15245051
A Dietary Model of Partial Meat Replacement with Walnuts Demonstrates Changes in the Nutrient Profile and Quality of the United States Population’s Diet.
The purpose of the study is to assess the impact of partial meat replacement with walnuts using a dose–escalation approach on nutrient intake and diet quality in the usual US diet. Food modeling was implemented using the nationally representative 2015–2018 National Health and Examination Survey (NHANES), with a focus on non-nut consumers, which included 2707 children and adolescents and 5190 adults. Walnuts replaced meat in a dose-escalating manner (0.5, 1, 1.5, and 2 oz walnuts per day replaced 1, 2, 3, and 4 oz meat, respectively). Diet quality was estimated using the population ratio method of the 2015 Healthy Eating Index. The usual intake of nutrients was estimated using the National Cancer Institute method. Significant differences were determined using non-overlapping 95% confidence intervals. The partial replacement of meat with walnuts demonstrated significant increases in the mean intake of fiber, magnesium, and omega-3 fatty acids and significant decreases in cholesterol and vitamin B12 in the modeled diets for children, adolescents, and adults. Additionally, the partial replacement of meat with walnuts improved overall diet quality. Walnut consumption at 1–2 oz as a replacement for some meat may improve nutrient intake and diet quality across age groups.
http://dx.doi.org/10.3390/nu15214518
Isolation, Identification, Activity Evaluation, and Mechanism of Action of Neuroprotective Peptides from Walnuts: A Review
As human life expectancy increases, the incidence of neurodegenerative diseases in older adults has increased in parallel. Walnuts contain bioactive peptides with demonstrated neuroprotective effects, making them a valuable addition to the diet. We here present a comprehensive review of the various methods used to prepare, isolate, purify, and identify the neuroprotective peptides found in walnuts. We further summarise the different approaches currently used to evaluate the activity of these peptides in experimental settings, highlighting their potential to reduce oxidative stress, neuroinflammation, and promote autophagy, as well as to regulate the gut microflora and balance the cholinergic system. Finally, we offer suggestions for future research concerning bioavailability and improving or masking the bitter taste and sensory properties of final products containing the identified walnut neuroprotective peptides to ensure successful adoption of these peptides as functional food ingredients for neurohealth promotion. https://doi.org/10.3390/nu15184085