Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions.

Epidemiological and clinical studies have indicated that nut consumption could be a healthy dietary strategy to prevent and treat type 2 diabetes (T2DM) and related cardiovascular disease (CVD). The objective of this review is to examine the potential mechanisms of action of nuts addressing effects on glycemic control, weight management, energy balance, appetite, gut microbiota modification, lipid metabolism, oxidative stress, inflammation, endothelial function and blood pressure with a focus on data from both animal and human studies. The favourable effects of nuts could be explained by the unique nutrient composition and bioactive compounds in nuts. Unsaturated fatty acids (monounsaturated fatty acids and polyunsaturated fatty acids) present in nuts may play a role in glucose control and appetite suppression. Fiber and polyphenols in nuts may also have an anti-diabetic effect by altering gut microbiota. Nuts lower serum cholesterol by reduced cholesterol absorption, inhibition of HMG-CoA reductase and increased bile acid production by stimulation of 7-α hydroxylase. Arginine and magnesium improve inflammation, oxidative stress, endothelial function and blood pressure. In conclusion, nuts contain compounds that favourably influence glucose homeostasis, weight control and vascular health. Further investigations are required to identify the most important mechanisms by which nuts decrease the risk of T2DM and CVD.
 


Nuts and Human Health Outcomes: A Systematic Review.

There has been increasing interest in nuts and their outcome regarding human health. The consumption of nuts is frequently associated with reduction in risk factors for chronic diseases. Although nuts are high calorie foods, several studies have reported beneficial effects after nut consumption, due to fatty acid profiles, vegetable proteins, fibers, vitamins, minerals, carotenoids, and phytosterols with potential antioxidant action. However, the current findings about the benefits of nut consumption on human health have not yet been clearly discussed. This review highlights the effects of nut consumption on the context of human health.
 


Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids.

DNA methylation could be reversible and mouldable by environmental factors, such as dietary exposures. The objective was to analyse whether an intervention with two Mediterranean diets, one rich in extra-virgin olive oil (MedDiet + EVOO) and the other one in nuts (MedDiet + nuts), was influencing the methylation status of peripheral white blood cells (PWBCs) genes. A subset of 36 representative individuals were selected within the PREvención con DIeta MEDiterránea (PREDIMED-Navarra) trial, with three intervention groups in high cardiovascular risk volunteers: MedDiet + EVOO, MedDiet + nuts, and a low-fat control group. Methylation was assessed at baseline and at five-year follow-up. Ingenuity pathway analysis showed routes with differentially methylated CpG sites (CpGs) related to intermediate metabolism, diabetes, inflammation, and signal transduction. Two CpGs were specifically selected: cg01081346-CPT1B/CHKB-CPT1B and cg17071192-GNAS/GNASAS, being associated with intermediate metabolism. Furthermore, cg01081346 was associated with PUFAs intake, showing a role for specific fatty acids on epigenetic modulation. Specific components of MedDiet, particularly nuts and EVOO, were able to induce methylation changes in several PWBCs genes. These changes may have potential benefits in health; especially those changes in genes related to intermediate metabolism, diabetes, inflammation and signal transduction, which may contribute to explain the role of MedDiet and fat quality on health outcomes.
 


Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients.

Epidemiological and clinical studies have indicated that nut consumption could be a healthy dietary strategy to prevent and treat type 2 diabetes (T2DM) and related cardiovascular disease (CVD). The objective of this review is to examine the potential mechanisms of action of nuts addressing effects on glycemic control, weight management, energy balance, appetite, gut microbiota modification, lipid metabolism, oxidative stress, inflammation, endothelial function and blood pressure with a focus on data from both animal and human studies. The favourable effects of nuts could be explained by the unique nutrient composition and bioactive compounds in nuts. Unsaturated fatty acids (monounsaturated fatty acids and polyunsaturated fatty acids) present in nuts may play a role in glucose control and appetite suppression. Fiber and polyphenols in nuts may also have an anti-diabetic effect by altering gut microbiota. Nuts lower serum cholesterol by reduced cholesterol absorption, inhibition of HMG-CoA reductase and increased bile acid production by stimulation of 7-α hydroxylase. Arginine and magnesium improve inflammation, oxidative stress, endothelial function and blood pressure. In conclusion, nuts contain compounds that favourably influence glucose homeostasis, weight control and vascular health. Further investigations are required to identify the most important mechanisms by which nuts decrease the risk of T2DM and CVD.
 


Associations between Nut Consumption and Health Vary between Omnivores, Vegetarians, and Vegans.

Abstract: Regular nut consumption is associated with reduced risk factors for chronic disease; however, most population-based studies lack consideration of effect modification by dietary pattern. The UK Women’s Cohort Study (UKWCS) provides an ideal opportunity to examine relationships between nut consumption and chronic disease risk factors in a large sample with diverse dietary patterns. Nut and nutrient intake from 34,831 women was estimated using a food frequency questionnaire among self-identified omnivores, vegetarians and vegans. In this cross-sectional analysis, higher nut consumption was associated with lower body weight (difference between highest and lowest consumption categories from adjusted model: 6.1 kg; 95% CI: 4.7, 7.6) body mass index (BMI, 2.4 units difference; 95% CI: 1.9, 2.9), and waist circumference (2.6 cm difference; 95% CI: 1.4, 3.8) (all p for linear trend <0.001). Higher nut consumption was also associated with reduced prevalence of high cholesterol and high blood pressure; having a history of heart attack, diabetes and gallstones; and markers of diet quality (all adjusted p for linear trend _0.011). Higher nut consumption appeared overall to be associated with greater benefits amongst omnivores compared to vegetarians and vegans. Findings support existing literature around beneficial effects of nut consumption and suggest that benefits may be larger among omnivores. Nut promotion strategies may have the highest population impact by specifically targeting this group.
 


A Walnut-Enriched Diet Reduces Lipids in Healthy Caucasian Subjects, Independent of Recommended Macronutrient Replacement and Time Point of Consumption: a Prospective, Randomized, Controlled Trial.

Studies indicate a positive association between walnut intake and improvements in plasma lipids. We evaluated the effect of an isocaloric replacement of macronutrients with walnuts and the time point of consumption on plasma lipids. We included 194 healthy subjects (134 females, age 63 ± 7 years, BMI 25.1 ± 4.0 kg/m²) in a randomized, controlled, prospective, cross-over study. Following a nut-free run-in period, subjects were randomized to two diet phases (8 weeks each). Ninety-six subjects first followed a walnut-enriched diet (43 g walnuts/day) and then switched to a nut-free diet. Ninety-eight subjects followed the diets in reverse order. Subjects were also randomized to either reduce carbohydrates (n = 62), fat (n = 65), or both (n = 67) during the walnut diet, and instructed to consume walnuts either as a meal or as a snack. The walnut diet resulted in a significant reduction in fasting cholesterol (walnut vs. CONTROL: -8.5 ± 37.2 vs. -1.1 ± 35.4 mg/dL; p = 0.002), non-HDL cholesterol (-10.3 ± 35.5 vs. -1.4 ± 33.1 mg/dL; p ≤ 0.001), LDL-cholesterol (-7.4 ± 32.4 vs. -1.7 ± 29.7 mg/dL; p = 0.029), triglycerides (-5.0 ± 47.5 vs. 3.7 ± 48.5 mg/dL; p = 0.015) and apoB (-6.7 ± 22.4 vs. -0.5 ± 37.7; p ≤ 0.001), while HDL-cholesterol and lipoprotein (a) did not change significantly. Neither macronutrient replacement nor time point of consumption significantly affected the effect of walnuts on lipids. Thus, 43 g walnuts/d improved the lipid profile independent of the recommended macronutrient replacement and the time point of consumption.
 


Nut Allergy in Two Different Areas of Spain: Differences in Clinical and Molecular Pattern.

INTRODUCTION: Different clinical and molecular patterns of food allergy have been reported in different areas of the world. The aim of the study is to evaluate differences in allergen patterns among nut-allergic patients in two different areas of Spain. MATERIAL AND METHODS: A total of 77 patients with nut allergy from two different regions of Spain (Madrid and Asturias) were evaluated. RESULTS: Hazelnut, peanut, and walnut were the three most frequent nuts eliciting allergy in both regions, but in a different order. Patients from Madrid experienced systemic reactions more often than patients from Asturias (73.5% Madrid vs. 50.0%, p < 0.05). The percentage of sensitizations to LTP (Lipid Transfer Protein) was higher than Bet v 1 (p < 0.05) in the Madrid area. The percentage of sensitizations in Asturias area was similar to LTP than Bet v 1 (Pru p 3 46.4%, Bet v 1 42.9%, ns). Bet v 1 was the predominant allergen involved among hazelnut-allergic patients (56.2%), while LTP was more common in peanut-allergic patients (61.5%). CONCLUSION: Walnut, hazelnut, and peanut were the most frequent nuts eliciting allergy in Spain. Despite this, important differences in molecular pattern were appreciated not only between both regions, but also among nut-allergic patients in Asturias. The different molecular pattern was linked to the frequency of systemic symptoms.


Consuming Almonds vs. Isoenergetic Baked Food Does Not Differentially Influence Postprandial Appetite or Neural Reward Responses to Visual Food Stimuli.

Nuts have high energy and fat contents, but nut intake does not promote weight gain or obesity, which may be partially explained by their proposed high satiety value. The primary aim of this study was to assess the effects of consuming almonds versus a baked food on postprandial appetite and neural responses to visual food stimuli. Twenty-two adults (19 women and 3 men) with a BMI between 25 and 40 kg/m² completed the current study during a 12-week behavioral weight loss intervention. Participants consumed either 28 g of whole, lightly salted roasted almonds or a serving of a baked food with equivalent energy and macronutrient contents in random order on two testing days prior to and at the end of the intervention. Pre- and postprandial appetite ratings and functional magnetic resonance imaging scans were completed on all four testing days. Postprandial hunger, desire to eat, fullness, and neural responses to visual food stimuli were not different following consumption of almonds and the baked food, nor were they influenced by weight loss. These results support energy and macronutrient contents as principal determinants of postprandial appetite and do not support a unique satiety effect of almonds independent of these variables.
 


Bone-Protective Effects of Dried Plum in Postmenopausal Women: Efficacy and Possible Mechanisms.

Osteoporosis is an age-related chronic disease characterized by a loss of bone mass and quality, and is associated with an increased risk of fragility fractures. Postmenopausal women are at the greatest risk of developing osteoporosis due to the cessation in ovarian hormone production, which causes accelerated bone loss. As the demographic shifts to a more aged population, a growing number of postmenopausal women will be afflicted with osteoporosis. Certain lifestyle factors, including nutrition and exercise, are known to reduce the risk of developing osteoporosis and therefore play an important role in bone health. In terms of nutrition, accumulating evidence suggests that dried plum (Prunus domestica L.) is potentially an efficacious intervention for preventing and reversing bone mass and structural loss in an ovariectomized rat model of osteoporosis, as well as in osteopenic postmenopausal women. Here, we provide evidence supporting the efficacy of dried plum in preventing and reversing bone loss associated with ovarian hormone deficiency in rodent models and in humans. We end with the results of a recent follow-up study demonstrating that postmenopausal women who previously consumed 100 g dried plum per day during our one-year clinical trial conducted five years earlier retained bone mineral density to a greater extent than those receiving a comparative control. Additionally, we highlight the possible mechanisms of action by which bioactive compounds in dried plum exert bone-protective effects. Overall, the findings of our studies and others strongly suggest that dried plum in its whole form is a promising and efficacious functional food therapy for preventing bone loss in postmenopausal women, with the potential for long-lasting bone-protective effects.
 


Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome.

There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice (n = 10 per genotype per diet, equal males and females). Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice. In MetS-Tg mice, walnuts were associated with reductions in oral glucose area under the curve (gAUC, standard diet 1455 ± 54, walnut 1146 ± 91, p = 0.006) and mean arterial blood pressure (MAP, standard diet 100.6 ± 1.9, walnut 73.2 ± 1.8 mmHg, p < 0.001), with neutral effects on gAUC and MAP in WT mice. However, in MetS-Tg mice, walnuts were also associated with trends for higher plasma cholesterol (standard diet 4.73 ± 0.18, walnut 7.03 ± 1.99 mmol/L, p = 0.140) and triglyceride levels (standard diet 2.4 ± 0.5, walnut 5.4 ± 1.6 mmol/L, p = 0.061), despite lowering cholesterol and having no effect on triglycerides in WT mice. Moreover, in both MetS-Tg and WT mice, walnuts were associated with significantly increased liver expression of genes associated with metabolism (Fabp1, Insr), cell stress (Atf6, Ddit3, Eif2ak3), fibrosis (Hgf, Sp1, Timp1) and inflammation (Tnf, Ptpn22, Pparg). In conclusion, dietary walnuts were associated with modest favourable effects in WT mice, but a combination of beneficial and adverse effects in MetS-Tg mice, and up-regulation of hepatic pro-fibrotic and pro-inflammatory genes in both mouse strains.