Extraction of bioactive compounds from pecan nutshell: An added-value and low-cost alternative for an industrial waste

The pecan nutshell [Carya illinoinensis (Wangenh) C. Koch] (PNS) is a source of bioactives with important beneficial properties for the human health. PNS represents between 40-50 % of total mass of the nut, resulting as waste without any added value for the food industry. Even though a variety of methods were already developed for bioactive extraction from this waste, unconventional methodologies, or those which apart from green chemistry principles, were discarded considering the cost of production, the sustainable development goals of United Nations and the feasibility of real inclusion of the technology in the food chain. Then, to add-value to this waste, a low-cost, green and easy-scalable extraction methodology was developed based on the determination of seven relevant factors by means of a factorial design and a Response Surface Methodology, allowing the extraction of bioactives with antioxidant capacity. The pecan nutshell extract had a high concentration of phenolic compounds (166 mg gallic acid equivalents-GAE/g dry weight-dw), flavonoids (90 mg catechin equivalent-CE/g dw) and condensed tannins (189 mg CE/g dw) -related also to the polymeric color (74.6 %)-, with high antioxidant capacities of ABTS+. radical inhibition (3665 µmol Trolox Equivalent-TE/g dw) and of iron reduction (1305 µmol TE/g dw). Several compounds associated with these determinations were identified by HPLC-ESI-MS/MS, such as [Epi]catechin-[Epi]catechin-[Epi]gallocatechin, myricetin, dihydroquercetins, dimers A and B of protoanthocyanidins, ellagitannins and ellagic acid derivatives. Hence, through the methodology developed here, we obtained a phenolic rich extract with possible benefits for human health, and of high industrial scalability for this co-product transformation. https://doi.org/10.1016/j.foodchem.2024.139596


Green and sustainable use of macadamia nuts as support material in Pt-based direct methanol fuel cells

The successful commercialization of direct methanol fuel cells (DMFCs) is hindered by inadequate methanol oxidation activity and anode catalyst longevity. Efficient and cost-effective electrode materials are imperative in the widespread use of DMFCs. While Platinum (Pt) remains the primary component of anodic methanol oxidation reaction (MOR) electrocatalysts, its utilization alone in DMFC systems is limited due to carbon monoxide (CO) poisoning, instability, methanol crossover, and high cost. These limitations impede the economic feasibility of Pt as an electrocatalyst. Herein, we present the use of powdered activated carbon (PAC) and granular activated carbon (GAC), both sourced from macadamia nut shells (MNS), a type of biomass. These bio-based carbon materials are integrated into hybrid supports with reduced graphene oxide (rGO), aiming to enhance the performance and reduce the production cost of the Pt electrocatalyst. Electrochemical and physicochemical characterizations of the synthesized catalysts, including Pt-rGO/PAC-1:1, Pt-rGO/PAC-1:2, Pt-rGO/GAC-1:1, and Pt-rGO/GAC-1:2, were conducted. X-ray diffraction analysis revealed crystallite sizes ranging from 1.18 nm to 1.68 nm. High-resolution transmission electron microscopy (HRTEM) images with average particle sizes ranging from 1.91 nm to 2.72 nm demonstrated spherical dispersion of Pt nanoparticles with some agglomeration across all catalysts. The electrochemical active surface area (ECSA) was determined, with Pt-rGO/GAC-1:1 exhibiting the highest ECSA of 73.53 m2 g-1. Despite its high ECSA, Pt-rGO/GAC-1:1 displayed the lowest methanol oxidation reaction (MOR) current density, indicating active sites with poor catalytic efficiency. Pt-rGO/PAC-1:1 and Pt-rGO/PAC-1:2 exhibited the highest MOR current densities of 0.77 mA*cm-2 and 0.74 mA*cm-2, respectively. Moreover, Pt-rGO/PAC-1:2 and Pt-rGO/PAC-1:1 demonstrated superior electrocatalytic mass (specific) activities of 7.55 mA/mg (0.025 mA*cm-2) and 7.25 mA/mg (0.021 mA*cm-2), respectively. Chronoamperometry tests revealed Pt-rGO/PAC-1:2 and Pt-rGO/PAC-1:1 as the most stable catalysts. Additionally, they exhibited the lowest charge transfer resistances and highest MOR current densities after durability tests, highlighting their potential for DMFC applications. The synthesized Pt supported on PACs hybrids demonstrated remarkable catalytic performance, stability, and CO tolerance, highlighting their potential for enhancing DMFC efficiency. https://doi.org/10.1016/j.heliyon.2024.e29907


Predictive Neural Network Modeling for Almond Harvest Dust Control

This study introduces a neural network-based approach to predict dust emissions, specifically PM2.5 particles, during almond harvesting in California. Using a feedforward neural network (FNN), this research predicted PM2.5 emissions by analyzing key operational parameters of an advanced almond harvester. Preprocessing steps like outlier removal and normalization were employed to refine the dataset for training. The network's architecture was designed with two hidden layers and optimized using tanh activation and MSE loss functions through the Adam algorithm, striking a balance between model complexity and predictive accuracy. The model was trained on extensive field data from an almond pickup system, including variables like brush speed, angular velocity, and harvester forward speed. The results demonstrate a notable predictive accuracy of the FNN model, with a mean squared error (MSE) of 0.02 and a mean absolute error (MAE) of 0.01, indicating high precision in forecasting PM2.5 levels. By integrating machine learning with agricultural practices, this research provides a significant tool for environmental management in almond production, offering a method to reduce harmful emissions while maintaining operational efficiency. This model presents a solution for the almond industry and sets a precedent for applying predictive analytics in sustainable agriculture. https://doi.org/10.3390/s24072136


Codex Alimentarius: 17th Session of the Codex Committee on Contaminants in Foods

The Committee adopted a definition of ready-to-eat peanuts

The 17th Session of the Codex Committee on Contaminants in Foods (CCCF17) took place in Panama City from April 15-19, 2024. Among other agenda items, the Committee discussed a definition of ready-to-eat peanuts proposed by an India-led Electronic Working Group (EWG) in which the INC participated alongside representatives of 22 countries and FoodDrinkEurope. The Committee agreed to apply the existing definition for ready-to-eat (RTE) tree nuts in the General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995) to RTE peanuts, and to establish an Electronic Working Group, chaired by India and co-chaired by the United States, to develop the maximum level for aflatoxins in RTE peanuts and the associated sampling plan for comments and consideration by CCCF18.

In addition, the Committee discussed a proposal submitted by a Brazil-led Electronic Working Group, in which the INC also participates, to undertake the revision of the Code of Practice for the Prevention and Reduction of Aflatoxin Contamination in Peanuts (CXC 55-2004). The Committee agreed to start new work on the revision of Code and to establish an EWG, chaired by Brazil and co-chaired by India, to prepare a proposed revision of the Code for comments and consideration by CCCF18.

For more information about CCCF17, see the meeting report.


Prediction of pediatric peanut oral food challenge outcomes using machine learning

Background: Clinical testing, including food-specific skin and serum IgE level tests, provides limited accuracy to predict food allergy. Confirmatory oral food challenges (OFCs) are often required, but the associated risks, cost, and logistic difficulties comprise a barrier to proper diagnosis. Objective: We sought to utilize advanced machine learning methodologies to integrate clinical variables associated with peanut allergy to create a predictive model for OFCs to improve predictive performance over that of purely statistical methods. Methods: Machine learning was applied to the Learning Early about Peanut Allergy (LEAP) study of 463 peanut OFCs and associated clinical variables. Patient-wise cross-validation was used to create ensemble models that were evaluated on holdout test sets. These models were further evaluated by using 2 additional peanut allergy OFC cohorts: the IMPACT study cohort and a local University of Michigan cohort. Results: In the LEAP data set, the ensemble models achieved a maximum mean area under the curve of 0.997, with a sensitivity and specificity of 0.994 and 1.00, respectively. In the combined validation data sets, the top ensemble model achieved a maximum area under the curve of 0.871, with a sensitivity and specificity of 0.763 and 0.980, respectively. Conclusions: Machine learning models for predicting peanut OFC results have the potential to accurately predict OFC outcomes, potentially minimizing the need for OFCs while increasing confidence in food allergy diagnoses.

https://doi.org/10.1016/j.jacig.2024.100252


Effects of enzymatic hydrolysis combined with pressured heating on tree nut allergenicity

Hazelnut, pistachio and cashew are tree nuts with health benefits but also with allergenic properties being prevalent food allergens in Europe. The allergic characteristics of these tree nuts after processing combining heat, pressure and enzymatic digestion were analyzed through in vitro (Western blot and ELISA) and in vivo test (Prick-Prick). In the analyzed population, the patients sensitized to Cor a 8 (nsLTP) were predominant over those sensitized against hazelnut seed storage proteins (Sprot, Cor a 9 and 14), which displayed higher IgE reactivity. The protease E5 effectively hydrolyzed proteins from hazelnut and pistachio, while E7 was efficient for cashew protein hydrolysis. When combined with pressured heating (autoclave and Controlled Instantaneous Depressurization (DIC)), these proteases notably reduced the allergenic reactivity. The combination of DIC treatment before enzymatic digestion resulted in the most effective methodology to drastically reduce or indeed eliminate the allergenic capacity of tree nuts.

https://doi.org/10.1016/j.foodchem.2024.139433


Identification of New Allergens in Macadamia Nut and Cross-Reactivity with Other Tree Nuts in a Spanish Cohort

The consumption of macadamia nuts has increased due to their cardioprotective and antioxidant properties. However, this rise is consistent with an increase in the cases of macadamia nut allergy, leading to severe reactions. Although two Macadamia integrifolia allergens (Mac i 1 and Mac i 2) have been identified in Australian and Japanese patients, the allergenic sensitization patterns in Western European populations, particularly in Spain, remain unclear. For this purpose, seven patients with macadamia nut allergy were recruited in Spain. Macadamia nut protein extracts were prepared and, together with hazelnut and walnut extracts, were used in Western blot and inhibition assays. IgE-reactive proteins were identified using MALDI-TOF/TOF mass spectrometry (MS). Immunoblotting assays revealed various IgE-binding proteins in macadamia nut extracts. Mass spectrometry identified three new allergens: an oleosin, a pectin acetylesterase, and an aspartyl protease. Cross-reactivity studies showed that hazelnut extract but not walnut extract inhibited macadamia nut oleosin-specific IgE binding. This suggests that oleosin could be used as marker for macadamia–hazelnut cross-reactivity. The results show an allergenic profile in the Spanish cohort different from that previously detected in Australian and Japanese populations. The distinct sensitization profiles observed highlight the potential influence of dietary habits and environmental factors exposure on allergenicity.

https://doi.org/10.3390/nu16070947


Current options in the management of tree nut allergy: A systematic review and narrative synthesis

Tree nut allergy is a lifelong and potentially life-threatening condition. The standard of care is strictly avoiding the culprit nut and treating accidental reactions symptomatically. To evaluate potential therapeutic options for desensitizing patients with IgE-mediated tree nut allergy, we systematically searched three bibliographic databases for studies published until January 2024. We looked for active treatments of IgE-mediated allergy to tree nuts (walnut, hazelnut, pistachio, cashew, almond, pecan, macadamia nut, and brazil nut). We focused on allergen-specific immunotherapy (AIT) using oral (OIT), sublingual (SLIT), epicutaneous (EPIT), or subcutaneous (SCIT) delivery, or other disease-modifying treatments. We found 19 studies that met our criteria: 3 studies investigated sublingual immunotherapy, 5 studied oral immunotherapy to a single tree nut, and 6 used multi-food oral immunotherapy with or without omalizumab. The remaining studies investigated the effectiveness of monoclonal antibodies or IgE-immunoadsorption in multi-food allergic patients, including patients with tree nut allergy. The heterogeneity of the studies prevented pooling and meta-analysis. Oral immunotherapy, single or multi-nut, with or without omalizumab, was the most studied approach and appears effective in conferring protection from accidental exposures. Omalizumab monotherapy is the only approved alternative management for reducing allergic reactions that may occur with accidental exposure.

https://doi.org/10.1111/pai.14132


Muesli Intake May Protect Against Coronary Artery Disease: Mendelian Randomization on 13 Dietary Traits

Background: Diet is a key modifiable risk factor of coronary artery disease (CAD). However, the causal effects of specific dietary traits on CAD risk remain unclear. With the expansion of dietary data in population biobanks, Mendelian randomization (MR) could help enable the efficient estimation of causality in diet-disease associations. Objectives: The primary goal was to test causality for 13 common dietary traits on CAD risk using a systematic 2-sample MR framework. A secondary goal was to identify plasma metabolites mediating diet-CAD associations suspected to be causal. Methods: Cross-sectional genetic and dietary data on up to 420,531 UK Biobank and 184,305 CARDIoGRAMplusC4D individuals of European ancestry were used in 2-sample MR. The primary analysis used fixed effect inverse-variance weighted regression, while sensitivity analyses used weighted median estimation, MR-Egger regression, and MR-Pleiotropy Residual Sum and Outlier. Results: Genetic variants serving as proxies for muesli intake were negatively associated with CAD risk (OR: 0.74; 95% CI: 0.65-0.84; P = 5.385 × 10-4). Sensitivity analyses using weighted median estimation supported this with a significant association in the same direction. Additionally, we identified higher plasma acetate levels as a potential mediator (OR: 0.03; 95% CI: 0.01-0.12; P = 1.15 × 10-4). Conclusions: Muesli, a mixture of oats, seeds, nuts, dried fruit, and milk, may causally reduce CAD risk. Circulating levels of acetate, a gut microbiota-derived short-chain fatty acid, could be mediating its cardioprotective effects. These findings highlight the role of gut flora in cardiovascular health and help prioritize randomized trials on dietary interventions for CAD.

https://doi.org/10.1016/j.jacadv.2024.100888


Brazil nut consumption reduces DNA damage in overweight type 2 diabetes mellitus patients

Type 2 diabetes mellitus (T2D) is a metabolic disease, which occurs largely due to unhealthy lifestyle. As oxidative stress is believed to promote T2D, by inducing damage to lipids, proteins, and DNA, appropriate dietary interventions seem critical to prevent, manage, and even reverse this condition. Brazil nuts (Bertholletia excelsa, H.B.K.) are nature's richest source of selenium, a mineral that has shown several health benefits. Therefore, this study aims to assess the effects of selenium consumption, through Brazil nuts, on biochemical and oxidative stress parameters, and genomic instability in T2D patients. We recruited 133 patients with T2D, registered in the Integrated Clinics of the University of Southern Santa Catarina (Brazil). Participants consumed one Brazil nut a day for six months. Blood samples and exfoliated buccal cells were collected at the beginning and the end of the intervention. The glycemic profile, lipid profile, renal profile and hepatic profile, DNA damage and selenium content were evaluated. A total of 74 participants completed the intervention. Brazil nut consumption increased selenium and GSH levels, GPx, and CAT activity while DCF and nitrites levels decreased. Total thiols increased, and protein carbonyl and MDA levels decreased. Levels of baseline and oxidative DNA damage in T2D patients were significantly decreased, as well as the frequency of micronuclei and nuclear buds. The fasting glucose levels, HDL and LDL cholesterol, and GGT levels that increased significantly in patients with type 2 diabetes were significantly reduced with nut consumption. Our results show an increase in antioxidant activity, along with reductions of protein and lipid oxidation as well as DNA damage, suggesting that Brazil nut consumption could be an ally in reducing oxidative stress and modulating the genomic instability in T2D patients.
https://doi.org/10.1016/j.mrgentox.2024.503739

https://doi.org/10.1016/j.tjnut.2024.03.012