Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells.

Hazelnut shells are the major byproduct of the hazelnut industry. The objectives of this study were to optimize the conditions for extracting phenolics and to identify and quantify the phenolics in hazelnut shells. Preliminary optimization showed that a high recovery of phenolics could be achieved with shell particle size less than 0.5mm when extracted with acetone at 50°C. Response surface experiments showed that a 10g/l liquid to solid ratio, 58% acetone, and 12h extraction time yielded the highest amount of phenolics. Twenty-seven phenolic compounds were identified in hazelnut shells by mass spectrometry. Coumaroylquinic acid, epicatechin gallate, quercetin, and six other phenolics were identified in hazelnut shells for the first time. The most abundant phenolics in hazelnut shells were catechin, epicatechin gallate, and gallic acid, as quantified by high performance liquid chromatography (HPLC). These results can be useful for the development of industrial extraction processes of natural antioxidants from hazelnut shells.


Food allergen detection by mass spectrometry: the role of systems biology.

Food allergy prevalence is rising worldwide, motivating the development of assays that can sensitively and reliably detect trace amounts of allergens in manufactured food. Mass spectrometry (MS) is a promising alternative to commonly employed antibody-based assays owing to its ability to quantify multiple proteins in complex matrices with high sensitivity. In this review, we discuss a targeted MS workflow for the quantitation of allergenic protein in food products that employs selected reaction monitoring (SRM). We highlight the aspects of SRM method development unique to allergen quantitation and identify opportunities for simplifying the process. One promising avenue identified through a comprehensive survey of published MS literature is the use of proteotypic peptides, which are peptides whose presence appears robust to variations in food matrix, sample preparation protocol, and MS instrumentation. We conclude that proteotypic peptides exist for a subset of allergenic milk, egg, and peanut proteins. For less studied allergens such as soy, wheat, fish, shellfish, and tree nuts, we offer guidance and tools for peptide selection and specificity verification as part of an interactive web database, the Allergen Peptide Browser (http://www.AllergenPeptideBrowser.org). With ongoing improvements in MS instrumentation, analysis software, and strategies for targeted quantitation, we expect an increasing role of MS as an analytical tool for ensuring regulatory compliance.
 


Dietary dried plum increases bone mass, suppresses proinflammatory cytokines and promotes attainment of peak bone mass in male mice.

Nutrition is an important determinant of bone health and attainment of peak bone mass. Diets containing dried plum (DP) have been shown to increase bone volume and strength. These effects may be linked to the immune system and DP-specific polyphenols. To better understand these relationships, we studied DP in skeletally mature (6-month-old) and growing (1- and 2-month-old) C57Bl/6 male mice. In adult mice, DP rapidly (<2 weeks) increased bone volume (+32%) and trabecular thickness (+24%). These changes were associated with decreased osteoclast surface (Oc.S/BS) and decreased serum CTX, a marker of bone resorption. The reduction in Oc.S/BS was associated with a reduction in the osteoclast precursor pool. Osteoblast surface (Ob.S/BS) and bone formation rate were also decreased suggesting that the gain in bone in adult mice is a consequence of diminished bone resorption and formation, but resorption is reduced more than formation. The effects of DP on bone were accompanied by a decline in interleukins, TNF and MCP-1, suggesting that DP is acting in part through the immune system to suppress inflammatory activity and reduce the size of the osteoclast precursor pool. Feeding DP was accompanied by an increase in plasma phenolics, some of which have been shown to stimulate bone accrual. In growing and young adult mice DP at levels as low as 5% of diet (w/w) increased bone volume. At higher levels (DP 25%), bone volume was increased by as much as 94%. These data demonstrate that DP feeding dramatically increases peak bone mass during growth.
 


A systematic review on the health effects of plums (Prunus domestica and Prunus salicina).

In recent times, plums have been described as foods with health-promoting properties. Research on the health effects of plum continue to show promising results on its antiinflammatory, antioxidant and memory-improving characteristics. The increased interest in plum research has been attributed to its high phenolic content, mostly the anthocyanins, which are known to be natural antioxidants. A systematic review of literature was carried out to summarize the available evidence on the impact of plums (Prunus species; domestica and salicina) on disease risk factors and health outcomes. A number of databases were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for relevant studies on plum health effects in vitro, animal studies and clinical trials. A total of 73 relevant peer-reviewed journal articles were included in this review. The level of evidence remains low. Of the 25 human studies, 6 were confirmatory studies of moderate quality, while 19 were exploratory. Plums have been shown to possess antioxidant and antiallergic properties, and consumption is associated with improved cognitive function, bone health parameters and cardiovascular risk factors. Most of the human trials used the dried version of plums rather than fresh fruit, thus limiting translation to dietary messages of the positioning of plums in a healthy diet. Evidence on the health effect of plums has not been extensively studied, and the available evidence needs further confirmation.


Reduction of Bacterial Pathogens and Potential Surrogates on the Surface of Almonds Using High-Intensity 405-Nanometer Light.

The disinfecting properties of high-intensity monochromatic blue light (MBL) were investigated against Escherichia coli O157:H7, Salmonella , and nonpathogenic bacteria inoculated onto the surface of almonds. MBL was generated from an array of narrow-band 405-nm light-emitting diodes. Almonds were inoculated with higher or lower levels (8 or 5 CFU/g) of pathogenic E. coli O157:H7 and Salmonella , as well as nonpathogenic E. coli K-12 and an avirulent strain of Salmonella Typhimurium, for evaluation as potential surrogates for their respective pathogens. Inoculated almonds were treated with MBL for 0, 1, 2, 4, 6, 8, and 10 min at a working distance of 7 cm. Simultaneous to treatment, cooling air was directed onto the almonds at a rate of 4 ft3/min (1.89 ×10-3 m3/s), sourced through a container of dry ice. An infrared camera was used to monitor the temperature readings after each run. For E. coli K-12, reductions of up to 1.85 or 1.63 log CFU/g were seen for higher and lower inoculum levels, respectively; reductions up to 2.44 and 1.44 log CFU/g were seen for E. coli O157:H7 (higher and lower inoculation levels, respectively). Attenuated Salmonella was reduced by up to 0.54 and 0.97 log CFU/g, whereas pathogenic Salmonella was reduced by up to 0.70 and 0.55 log CFU/g (higher and lower inoculation levels, respectively). Inoculation level did not significantly impact minimum effective treatment times, which ranged from 1 to 4 min. Temperatures remained below ambient throughout treatment, indicating that MBL is a nonthermal antimicrobial process. The nonpathogenic strains of E. coli and Salmonella each responded to MBL in a comparable manner to their pathogenic counterparts. These results suggest that these nonpathogenic strains may be useful in experiments with MBL in which a surrogate is required, and that MBL warrants further investigation as a potential antimicrobial treatment for low-moisture foods.


Survival Kinetics of Salmonella enterica and Enterohemorrhagic Escherichia coli on a Plastic Surface at Low Relative Humidity and on Low–Water Activity Foods.

We investigated the survival kinetics of Salmonella enterica and enterohemorrhagic Escherichia coli under various water activity (aw) conditions to elucidate the net effect of aw on pathogen survival kinetics and to pursue the development of a predictive model of pathogen survival as a function of aw. Four serotypes of S. enterica (Stanley, Typhimurium, Chester, and Oranienburg) and three serotypes of enterohemorrhagic E. coli ( E. coli O26, E. coli O111, and E. coli O157:H7) were examined. These bacterial strains were inoculated on a plastic plate surface at a constant relative humidity (RH) (22, 43, 58, 68, or 93% RH, corresponding to the aw) or on a surface of almond kernels (aw 0.58), chocolate (aw 0.43), radish sprout seeds (aw 0.58), or Cheddar cheese (aw 0.93) at 5, 15, or 25°C for up to 11 months. Under most conditions, the survival kinetics were nonlinear with tailing regardless of the storage aw, temperature, and bacterial strain. For all bacterial serotypes, there were no apparent differences in pathogen survival kinetics on the plastic surface at a given storage temperature among the tested RH conditions, except for the 93% RH condition. Most bacterial serotypes were rapidly inactivated on Cheddar cheese when stored at 5°C compared with their inactivation on chocolate, almonds, and radish sprout seeds. Distinct trends in bacterial survival kinetics were also observed between almond kernels and radish sprout seeds, even though the aws of these two foods were not significantly different. The survival kinetics of bacteria inoculated on the plastic plate surface showed little correspondence to those of bacteria inoculated on food matrices at an identical aw. Thus, these results demonstrated that, for low-aw foods and/or environments, aw alone is insufficient to account for the survival kinetics of S. enterica and enterohemorrhagic E. coli.


Evaluation the effect of gamma irradiation on microbial, chemical and sensorial properties of peanut (Arachis hypogaea l.) seeds.

BACKGROUND: The aim of the present study was to evaluate the possibility to apply gamma radiation treatment for decontaminating and assuring the quality of peanut seeds. METHODS: The radiation processing was carried out at dose levels of 3, 6 and 9 kGy. The irradiated and non-irradiated (control) samples were stored at room temperature for 12 months, and analyzed for microbial load, proximate composition, sensorial acceptance and chemical properties. RESULTS: The results indicated that gamma irradiation treatment significantly (p < 0.05) reduced microbial load and enhanced the safety of the irradiated samples. The irradiated samples were also acceptable sensorically. The total acidity and total volatile nitrogen (TVBN) contents increased with the increase of radiation dose. Furthermore, in general, no substantial change in proximate constituents was observed amongst the samples. No significant (p > 0.05) differences in the taste, flavor, color and texture score were observed among treatments (0, 3, 6 and 9 kGy). CONCLUSIONS: Irradiation protected again bacterial and fungal growth and retained the nutritional components of samples during long-term storage.


Almond “Appetizer” Effect on Glucose Tolerance Test (GTT) Results.

BACKGROUND: The extent to which glucose intolerance can be acutely improved with dietary modification is unclear. The purpose of this study was to test the effect of ingesting a low-calorie almond preload ("appetizer") 30 minutes before oral glucose tolerance testing in glucose-intolerant individuals without diabetes. METHODS: Twenty adults with prediabetes or isolated 1-hour glucose ≥160 mg/dL underwent 2 fasting oral glucose tolerance tests (GTTs)-1 standard GTT and 1 GTT 30 minutes after eating a half ounce (12) of dry-roasted almonds. Fourteen participants met 1 or more prediabetes diagnostic criteria; 6 had only elevated 1-hour glucose ≥160 mg/dL. RESULTS: The mean 1-hour plasma glucose after the almond preload was 37.1 mg/dL (19.4%) lower (154.6 vs 191.7; P < .001) than in the standard GTT. The almond preload reduced the area under the glucose curve by 15.5% (P < .001). Eight individuals had a marked hypoglycemic effect (glucose reduced by 45 to 110 mg/dL); 4 had a moderate hypoglycemic effect (22-32 mg/dL). CONCLUSION: A low-calorie almond "appetizer" showed promise as an option for decreasing postprandial hyperglycemia in individuals with prediabetes or isolated 1-hour postprandial hyperglycemia. Further study is needed to confirm and refine the role of such a premeal appetizer in the self-care of prediabetes.


The Walnuts and Healthy Aging study (WAHA): Protocol for a Nutritional Intervention Trial with Walnuts on Brain Aging.

Introduction: An unwanted consequence of population aging is the growing number of elderly at risk of neurodegenerative disorders, including dementia and macular degeneration. As nutritional and behavioral changes can delay disease progression, we designed the Walnuts and Healthy Aging (WAHA) study, a two-center, randomized, 2-year clinical trial conducted in free-living, cognitively healthy elderly men and women. Our interest in exploring the role of walnuts in maintaining cognitive and retinal health is based on extensive evidence supporting their cardio-protective and vascular health effects, which are linked to bioactive components, such as n-3 fatty acids and polyphenols. Methods: The primary aim of WAHA is to examine the effects of ingesting walnuts daily for 2 years on cognitive function and retinal health, assessed with a battery of neuropsychological tests and optical coherence tomography, respectively. All participants followed their habitual diet, adding walnuts at 15% of energy (≈30-60 g/day) (walnut group) or abstaining from walnuts (control group). Secondary outcomes include changes in adiposity, blood pressure, and serum and urinary biomarkers in all participants and brain magnetic resonance imaging in a subset. Results: From May 2012 to May 2014, 708 participants (mean age 69 years, 68% women) were randomized. The study ended in May 2016 with a 90% retention rate. Discussion: The results of WAHA might provide high-level evidence of the benefit of regular walnut consumption in delaying the onset of age-related cognitive impairment and retinal pathology. The findings should translate into public health policy and sound recommendations to the general population (ClinicalTrials.gov identifier NCT01634841).


A Novel Immunoassay Test System for Detection of Modified Allergen Residues Present in Almond-, Cashew-, Coconut-, Hazelnut-, and Soy-Based Nondairy Beverages.

A growing number of plant-based milk substitutes have become commercially available, providing an array of options for consumers with dietary restrictions. Though several of these products rival cow's milk in terms of their nutritional profiles, beverages prepared with soy and tree nuts can be a significant concern to consumers because of potential contamination with food allergens. Adding to this concern is the fact that allergen residues from plant-based beverages are modified during manufacturing, thereby decreasing the sensitivity of antibody-based detection methods. Consequently, many commercially available allergen detection kits are less effective for allergens derived from nondairy milk substitutes. To address this limitation, we developed a panel of polyclonal antibodies directed against the modified proteins present in almond, cashew, coconut, hazelnut, and soy milks and incorporated them into rapid lateral flow immunoassay tests configured in both sandwich and competitive format. The tests had robust detection capabilities when used with a panel of various brand-name products, with a sensitivity of 1 ppm and selectivity values of 3 to 5 ppm in nondairy beverages. Minimal cross-reactivity to extracts prepared from common commodities was observed. The development of a highly sensitive and rapid test specifically designed to detect trace quantities of highly modified allergen residues in plant-based, dairy-free beverages will aid food manufacturers and regulatory agencies in monitoring products for these modified allergens when testing environmental and food samples.