Whole genome analysis of Bacillus amyloliquefaciens TA-1, a promising biocontrol agent against Cercospora arachidicola pathogen of early leaf spot in Arachis hypogaea L

Background: Early leaf spot disease, caused by Cercospora arachidicola, is a devastating peanut disease that has severely impacted peanut production and quality. Chemical fungicides pollute the environment; however, Bacillus bacteria can be used as an environmentally friendly alternative to chemical fungicides. To understand the novel bacterial strain and unravel its molecular mechanism, De novo whole-genome sequencing emerges as a rapid and efficient omics approach. Results: In the current study, we identified an antagonistic strain, Bacillus amyloliquefaciens TA-1. In-vitro assay showed that the TA-1 strain was a strong antagonist against C. arachidicola, with an inhibition zone of 88.9 mm. In a greenhouse assay, results showed that the TA-1 strain had a significant biocontrol effect of 95% on peanut early leaf spot disease. De novo whole-genome sequencing analysis, shows that strain TA-1 has a single circular chromosome with 4172 protein-coding genes and a 45.91% guanine and cytosine (GC) content. Gene function was annotated using non-redundant proteins from the National Center for Biotechnology Information (NCBI), Swiss-Prot, the Kyoto Encyclopedia of Genes and Genomes (KEGG), clusters of orthologous groups of proteins, gene ontology, pathogen-host interactions, and carbohydrate-active enZYmes. antiSMASH analysis predicted that strain TA-1 can produce the secondary metabolites siderophore, tailcyclized peptide, myxochelin, bacillibactin, paenibactin, myxochelin, griseobactin, benarthin, tailcyclized, and samylocyclicin. Conclusion: The strain TA-1 had a significant biological control effect against peanut early leaf spot disease in-vitro and in greenhouse assays. Whole genome analysis revealed that, TA-1 strain belongs to B. amyloliquefaciens and could produce the antifungal secondary metabolites. https://doi.org/10.1186/s12870-023-04423-4


Efficacy of the biocontrol agent Trichoderma hamatum against Lasiodiplodia theobromae on macadamia

Macadamia (Macadamia integrifolia) trees are an important source of revenue in rainforest ecosystems. Their nuts are rich in vitamins, minerals, fiber, antioxidants, and monounsaturated oils. The fungus Lasiodiplodia theobromae, however, is a major disease problem, causing kernel rot and other disease symptoms. In the present study, a dual confrontation assay was used to evaluate the inhibitory effect of an endophytic strain of Trichoderma hamatum C9 from macadamia root against L. theobromae. Volatiles and cell-free culture filtrate of T. hamatum were also used to assess their antifungal activity against L. theobromae. Results suggested that T. hamatum exhibited a significant inhibitory effect against L. theobromae in vitro. Further results of a biocontrol assay indicated that a spray treatment of T. hamatum conidial suspension significantly decreased the size of lesions caused by artificially inoculated L. theobromae on macadamia leaves, as well as the disease index in young trees inoculated with L. theobromae, relative to sterile water controls. Collectively, our findings indicate that T. hamatum C9 represents a potential biocontrol agent that can be used to manage L. theobromae on macadamia. https://doi.org/10.3389/fmicb.2022.994422


Computer vision-assisted smartphone microscope imaging digital immunosensor based on click chemistry-mediated microsphere counting technology for the detection of aflatoxin B1 in peanuts

Aflatoxin B1 is a carcinogenic contaminant in food or feed, and it poses a serious health risk to humans. Herein, a computer vision-assisted smartphone microscope imaging digital (SMID) immunosensor based on the click chemistry-mediated microsphere counting technology was designed for the detection of aflatoxin B1 in peanuts. In this SMID immunosensor, the modified polystyrene (PS) microspheres were used as the signal probes and were recorded by a smartphone microscopic imaging system after immunoreaction and click chemistry reaction. The number of PS probes is adjusted by aflatoxin B1. The customized computer vision procedure was used to efficiently identify and count the obtained PS probes. This SMID immunosensor enables sensitive detection of aflatoxin B1 with a linear range from 0.001 ng/mL to 500 ng/mL, providing a simple, sensitive, and portable tool for food safety supervision. https://doi.org/10.1016/j.aca.2023.341687


Clinically and industrially relevant incurred reference materials to improve analysis of food allergens, milk, egg, almond, hazelnut and walnut

Measurement of food allergen protein concentrations against thresholds can improve allergen risk management and precautionary allergen labelling. Such measurement suffers well known problems which could be ameliorated by well characterised reference materials (RMs) providing meaningful information for risk assessors. We investigated the preparation and characterisation of the first consensus informed industrially and clinically relevant multi-allergen matrix RM kit for five priority allergens. It is a medium analytical difficulty processed food chocolate paste matrix (a) devoid of allergens, and (b) incurred with five allergens at the clinically relevant concentration of 10 mg kg-1 expressed as protein. The allergen raw materials: hens' egg white powder, skimmed cows' milk powder, almond powder (full fat), hazelnut powder (partially defatted), and walnut powder (partially defatted), are also available as RMs. The preparation, gravimetric traceability to the SI, homogeneity, and stability were found to be fit-for-purpose and the RMs are now available to the analytical community. https://doi.org/10.1016/j.foodchem.2023.137391


Assessing the Impact of Roasting Temperatures on Biochemical and Sensory Quality of Macadamia Nuts (Macadamia integrifolia)

Depending on the temperature regime used during roasting, the biochemical and sensory characteristics of macadamia nuts can change. 'A4' and 'Beaumont' were used as model cultivars to examine how roasting temperatures affected the chemical and sensory quality of macadamia nuts. Using a hot air oven dryer, macadamia kernels were roasted at 50, 75, 100, 125, and 150 °C for 15 min. The quantity of phenols, flavonoids, and antioxidants in kernels roasted at 50, 75, and 100 °C was significant (p < 0.001); however, these kernels also had high levels of moisture content, oxidation-sensitive unsaturated fatty acids (UFAs), and peroxide value (PV), and poor sensory quality. Low moisture content, flavonoids, phenols, antioxidants, fatty acid (FA) compositions, high PV, and poor sensory quality-i.e., excessive browning, an exceptionally crunchy texture, and a bitter flavor-were all characteristics of kernels roasted at 150 °C. With a perfect crispy texture, a rich brown color, and a strong nutty flavor, kernels roasted at 125 °C had lower PV; higher oxidation-resistant UFA compositions; considerable concentrations of flavonoids, phenols, and antioxidants; and good sensory quality. Therefore, 'A4' and 'Beaumont' kernels could be roasted at 125 °C for use in the industry to improve kernel quality and palatability. https://doi.org/10.3390/foods12112116


The influence of almond's water activity and storage temperature on Salmonella survival and thermal resistance

This study investigated the effects of inoculation method, water activity (aw), packaging method, and storage temperature and duration on the survival of Salmonella on almonds as well as their resistance to subsequent thermal treatments. Whole almond kernels were inoculated with a broth-based or agar-based growth Salmonella cocktail and conditioned to aw of 0.52, 0.43 or 0.27. Inoculated almonds with aw of 0.43 were treated with a previously validated treatment (4 h of dry heat at 73 °C) to determine the potential differences in heat resistance resulted from the two inoculation methods. The inoculation method did not significantly (P > 0.05) impact the thermal resistance of Salmonella. Inoculated almonds at aw of 0.52 and 0.27 were either vacuum packaged in moisture-impermeable mylar bags or non-vacuum packaged in moisture-permeable polyethylene bags before stored at 35, 22, 4, or -18 °C for up to 28 days. At selected storage intervals, almonds were measured for aw, analyzed for Salmonella population level, and subjected to dry heat treatment at 75 °C. Over the month-long storage of almonds, Salmonella populations remained almost unchanged (<0.2 log CFU/g) at 4 °C and -18 °C and declined slightly (<0.8 log CFU/g) at 22 °C and more substantially (1.6-2.0 log CFU/g) at 35 °C regardless of the inoculation method, packaging method, and almond aw. When stored at 35 °C, almonds with initial aw of 0.52 had significantly higher (P < 0.05) Salmonella reductions than those with initial aw of 0.27. Prior storage of almonds vacuum packaged in mylar bags at temperatures between -18 °C and 35 °C for 28 days affected their aw levels but did not significantly (P > 0.05) affect the subsequent thermal resistance of Salmonella at 75 °C regardless of almond aw and storage duration. Salmonella on almonds with higher aw was more sensitive to heat treatment than those with lower aw. To achieve >5 log CFU/g reductions of Salmonella, a dry heat treatment at 75 °C for 4 and 6 h was needed for almonds with initial aw of 0.52 and 0.27, respectively. When applying the dry heating technology for almond decontamination, the processing time needs to be determined based on initial aw of almonds regardless of storage condition or age of almonds within the current design frame. https://doi.org/10.1016/j.fm.2023.104269


Performance of the SAFER model in estimating peanut maturation

The most widespread method for obtaining Peanut Maturity Index (PMI), the Hull-Scrape, is time-consuming and highly subjective, which makes its application on a large scale difficult and does not represent the variability of the production area. Seeking more accurate PMI estimates, this research uses a combination of weather and spectral data. Therefore, this study aimed to evaluate the performance of the Simple Algorithm for Evapotranspiration Retrieving (SAFER) model to calculate evapotranspiration and estimate PMI, indicating the optimal timing for crop digging. The experiment was conducted in three commercial peanut fields (A, B, and C) in Georgia, USA, in the 2020 and 2021 growing seasons. Pods were collected on different dates and classified according to maturity using the Hull-Scrape method. Weather data and PlanetScope images were used to calculate actual evapotranspiration from the SAFER model, which was correlated with the PMI collected in situ and used to generate linear regression models. Maturity in Fields A and B showed a stronger correlation with evapotranspiration estimated by SAFER (0.757 and 0.796, respectively), which led to the development of a model using data from these two fields. This model presented a relative error of 13.16% and proved to be the most suitable for estimating peanut maturity by integrating different field conditions. The SAFER model proved to be promising for estimating PMI, as it reduces the subjectivity of the traditional method by eliminating the need for a person to identify the color of pod mesocarp. Additionally, the model does not require images from the given day PMI is estimated, allowing for the estimation even in regions highly affected by the presence of clouds and shadows. https://doi.org/10.1016/j.eja.2023.126844


Mild heat treatment achieved better inactivation of Salmonella and preservation of almond quality than ultraviolet light and chemical sanitizers

This study was conducted to compare the effects of ultraviolet light (UV), chemical sanitizers, and heat treatments on Salmonella inactivation and preservation of almond quality. Whole, skinless, and sliced almonds, representing different shape and surface topography, were inoculated with a Salmonella cocktail consisting of S. Montevideo, S. Newport, S. Typhimurium, S. Heidelberg, and S. Enteritidis. Inoculated almonds (50 g) were treated by UV (30 mW/cm2, 30 or 60 min), 75 °C heat (up to 150 min), and chemical sanitizers (3 % hydrogen peroxide (H2O2) and 1 % cetylpyridinium chloride (CPC), 30 or 60 min) alone or in combinations. Uninoculated almonds were similarly treated for analyzing color, visual appearance, and weight changes. In general, UV treatment alone was ineffective in inactivating Salmonella; the 30- and 60-min UV treatments reduced Salmonella by 1.3 (± 0.1) and 1.7 (± 0.1), 2.7 (± 0.2) and 3.3 (± 0.1), and 1.3 (± 0.1) and 1.7 (± 0.1) log CFU/g on whole, skinless, and sliced almonds, respectively. Prior wetting of almonds with water and chemical solutions in a few cases significantly (P < 0.05) increased the UV inactivation of Salmonella. The most pronounced Salmonella killing effect achieved by the combined treatments were: 1-min H2O2 dipping followed by 60-min UV treatment for whole (3.0 logs) and skinless almonds (3.8 logs) and 1-min CPC dipping followed by 60-min UV treatment for sliced almonds (3.0 logs). However, none of those achieved >4 log reductions of Salmonella as required by FDA. The 30-min UV treatment produced discolored but overall acceptable almonds, whereas the 60-min UV treatment led to deteriorated almonds including a dark color, oil extraction, and shrunk kernel size. Prior wetting reduced the sample weight loss but caused local burning and kernel cracking. A sequential approach of a 60-min 75 °C heat treatment and two 30-min wet UV treatments successfully reduced Salmonella by >4 logs, but more severe kernel cracking occurred. In contrast, a single heat treatment of vacuum packaged whole almonds at 75 °C for 150 min was capable of achieving >5 log reductions of Salmonella while preserving almond color and visual qualities and minimizing weight loss. These results clearly demonstrated that the heat treatment was a much better processing technology than UV and sanitizers for raw almond pasteurization. https://doi.org/10.1016/j.ijfoodmicro.2023.110253


Multigene Phylogeny and Pathogenicity Trials Revealed Alternaria alternata as the Causal Agent of Black Spot Disease and Seedling Wilt of Pecan (Carya illinoinensis) in South Africa

The pecan (Carya illinoinensis) industry in South Africa is growing rapidly, and it is becoming increasingly crucial to understand the risks posed to pecans by fungal pathogens. Black spots on leaves, shoots, and nuts in shucks caused by Alternaria species have been observed since 2014 in the Hartswater region of the Northern Cape Province of South Africa. Species of Alternaria include some of the most ubiquitous plant pathogens on earth. The aim of this study was to use molecular techniques to identify the causative agents of Alternaria black spot and seedling wilt isolated from major South African pecan-production areas. Symptomatic and non-symptomatic pecan plant organs (leaves, shoots, and nuts-in-shucks) were collected from pecan orchards, representing the six major production regions in South Africa. Thirty Alternaria isolates were retrieved from the sampled tissues using Potato Dextrose Agar (PDA) culture media and molecular identification was conducted. The phylogeny of multi-locus DNA sequences of GapdhRpb2Tef1, and Alt a 1 genes revealed that the isolates were all members of Alternaria alternata sensu stricto, forming part of the Alternaria alternata species complex. The virulence of six A. alternata isolates were tested on detached nuts of Wichita and Ukulinga cultivars, respectively, as well as detached leaves of Wichita. The A. alternata isolates were also evaluated for their ability to cause seedling wilt in Wichita. The results differed significantly between wounded and unwounded nuts of both cultivars, but not between the cultivars. Similarly, the disease lesions on the wounded detached leaves were significantly different in size from the unwounded leaves. The seedling tests confirmed that A. alternata is pathogenic and that A. alternata causes black spot disease and seedling wilt of pecans. This study is one of the first documentations of Alternaria black spot disease of pecan trees and its widespread occurrence in South Africa. https://doi.org/10.3390/pathogens12050672


Performance of two egg parasitoids of brown marmorated stink bug before and after cold storage

Introduction: The genus Trissolcus includes a number of egg parasitoids that are known to contribute to the control of Halyomorpha halys. The number of progenies, particularly females, is important for the efficient mass rearing of species used in augmentative biological control programs. Cold storage is an important technique for extending the shelf life of natural enemies used in such programs. Methods: We assessed how fecundity, sex ratio, lifespan, and the number of hosts parasitized within 24 h were affected by host density for T. japonicus and T. cultratus when offered fresh H. halys eggs and how these parameters were affected if adult parasitoids were first placed in cold storage (11°C in the dark) for 19 weeks before being used for propagation. Results: The fecundity were 110.2 and 84.2 offspring emerged at 25°C, for parasitoids not placed in cold storage; among the offspring that emerged, 82.6% and 85.6% were female for T. japonicus and T. cultratus, respectively. If first placed in cold storage, T. japonicus and T. cultratus produced 35.1 and 24.6 offspring per female, respectively, although cold storage significantly extended the shelf life. The survival rates of parasitoids that were placed in cold storage were 90.3% and 81.3% for females, and 3.2% and 0.9% for males of T. japonicus and T. cultratus, respectively. The number of hosts parasitized within 24 h was not shown to be density dependent, but it was significantly lower after cold storage. https://doi.org/10.3389/fphys.2023.1102216