Survival Kinetics of Salmonella enterica and Enterohemorrhagic Escherichia coli on a Plastic Surface at Low Relative Humidity and on Low–Water Activity Foods.
We investigated the survival kinetics of Salmonella enterica and enterohemorrhagic Escherichia coli under various water activity (aw) conditions to elucidate the net effect of aw on pathogen survival kinetics and to pursue the development of a predictive model of pathogen survival as a function of aw. Four serotypes of S. enterica (Stanley, Typhimurium, Chester, and Oranienburg) and three serotypes of enterohemorrhagic E. coli ( E. coli O26, E. coli O111, and E. coli O157:H7) were examined. These bacterial strains were inoculated on a plastic plate surface at a constant relative humidity (RH) (22, 43, 58, 68, or 93% RH, corresponding to the aw) or on a surface of almond kernels (aw 0.58), chocolate (aw 0.43), radish sprout seeds (aw 0.58), or Cheddar cheese (aw 0.93) at 5, 15, or 25°C for up to 11 months. Under most conditions, the survival kinetics were nonlinear with tailing regardless of the storage aw, temperature, and bacterial strain. For all bacterial serotypes, there were no apparent differences in pathogen survival kinetics on the plastic surface at a given storage temperature among the tested RH conditions, except for the 93% RH condition. Most bacterial serotypes were rapidly inactivated on Cheddar cheese when stored at 5°C compared with their inactivation on chocolate, almonds, and radish sprout seeds. Distinct trends in bacterial survival kinetics were also observed between almond kernels and radish sprout seeds, even though the aws of these two foods were not significantly different. The survival kinetics of bacteria inoculated on the plastic plate surface showed little correspondence to those of bacteria inoculated on food matrices at an identical aw. Thus, these results demonstrated that, for low-aw foods and/or environments, aw alone is insufficient to account for the survival kinetics of S. enterica and enterohemorrhagic E. coli.
Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans.
Se and green tea have been shown in epidemiological, observational and preclinical studies to be inversely related to the risk of developing colorectal cancer (CRC). However, there are limited studies to evaluate their regulatory effects on genes/proteins that relate to CRC oncogenesis in human subjects, such as selenoproteins, WNT signalling pathway, inflammation and methylation. This study examined the effects of supplementation of Se using Brazil nuts and green tea extract (GTE) capsules, alone and in combination, on targeted biomarkers. In total, thirty-two volunteers (>50 years of age) with plasma Se≤1·36 µmol/l were randomised to one of three treatment groups: nine to Se (approximately 48 µg/d) as six Brazil nuts, eleven to four GTE capsules (800 mg (-)-epigallocatechin-3-gallate) and twelve to a combination of Brazil nuts and GTE. Blood and rectal biopsies were obtained before and after each intervention. Plasma Se levels, rectal selenoprotein P (SePP) and β-catenin mRNA increased significantly in subjects consuming Brazil nuts alone or in combination, whereas rectal DNA methyltransferase (DNMT1) and NF-κB mRNA were reduced significantly in subjects consuming GTE alone or in combination. None of the interventions significantly affected rectal acetylated histone H3 or Ki-67 expression at the protein level or plasma C-reactive protein. Effects of the combination of Brazil nuts and GTE did not differ from what would be expected from either agent alone. In conclusion, supplementation of Brazil nuts and/or GTE regulates targeted biomarkers related to CRC oncogenesis, specifically genes associated with selenoproteins (SePP), WNT signalling (β-catenin), inflammation (NF-κB) and methylation (DNMT1). Their combination does not appear to provide additional effects compared with either agent alone.
Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling.
Twenty-one almond samples from three different geographical origins (Sicily, Spain and California) were investigated by determining minerals and fatty acids compositions. Data were used to discriminate by chemometry almond origin by linear discriminant analysis. With respect to previous PCA profiling studies, this work provides a simpler analytical protocol for the identification of almonds geographical origin. Classification by using mineral contents data only was correct in 77% of the samples, while, by using fatty acid profiles, the percentages of samples correctly classified reached 82%. The coupling of mineral contents and fatty acid profiles lead to an increased efficiency of the classification with 87% of samples correctly classified.
Potential health benefits and quality of dried fruits: goji fruits, cranberries and raisins.
Dried fruits are important snacks and additives to other foods due to their taste and nutritional advantages. Therefore there is an important goal to control the quality of the food on the market for consumer's safety. Antioxidant activity of goji fruits (Lycium barbarum), cranberries (Vaccinium macrocarpon and oxycoccus) and raisins (Vitis vinifera) were studied using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and Folin-Ciocalteu assays. Cu, Mn and Ge influencing antioxidant activity were determined together with selected toxic metals (Cd, Ni and Pb). Contamination with fungi was studied by quantification of their marker - ergosterol and important mycotoxins (aflatoxins B1, B2, G1 and G2, and ochratoxin A) were also determined. Antioxidant activity of all tested dried fruits was confirmed with goji fruits being the most profitable for consumers. Contamination of the tested fruits with toxic metals and mycotoxins was low.
Exploratory analysis of CD63 and CD203c expression in basophils from hazelnut sensitized and allergic individuals.
BACKGROUND: Sensitization to hazelnut (HN) is frequent and requires clarification to determine whether this sensitization is clinically relevant. The aim of this study was to investigate basophil activation profiles in HN-sensitized and allergic subjects. METHODS: Basophil activation was determined by flow cytometric analyses of CD63 and CD203c expression using several HN allergen concentrations. Depending on their clinical reaction pattern, an oral allergy symptom group (OAS, n = 20), a systemic reaction group (n = 12) and a sensitized group without clinical symptoms (n = 20) were identified. Additionally, 10 non-allergic and non-sensitized individuals served as controls. RESULTS: CD63 and CD203c expression differed between allergic (OAS and systemic group) and sensitized subjects. The HN concentration required to activate 30% of CD203c+ basophils [effective concentration (EC)30] was significantly higher in sensitized versus the allergic group (p = 0.0089). This was more pronounced when the basophil allergen threshold sensitivity (CD-sens) was calculated (CD63: p = 0.018; CD203c: p = 0.009). CONCLUSION: Our data indicate that the basophil activation test may provide information to better distinguish between sensitized and allergic subjects if several allergen concentrations are considered. CD203c expression displayed a better discrimination compared to CD63; therefore, its diagnostic value might be superior compared with CD63.
Streamlining the analytical workflow for multiplex MS/MS allergen detection in processed foods
Allergenic ingredients in pre-packaged foods are regulated by EU legislation mandating their inclusion on labels. In order to protect allergic consumers, sensitive analytical methods are required for detect allergen traces in different food products. As a follow-up to our previous investigations, an optimized, sensitive, label-free LC-MS/MS method for multiplex detection of five allergenic ingredients in a processed food matrix is proposed. A cookie base was chosen as a complex food matrix and home-made cookies incurred with whole egg, skimmed milk, soy flour, ground hazelnut and ground peanut were prepared at laboratory scale. In order to improve the analytical workflow both protein extraction and purification protocols were optimized and finally a sensitive streamlined SRM based analytical method for allergens detection in incurred cookies was devised. The effect of baking on the detection of selected markers was also investigated.
Advances in food allergy in 2015.
This review highlights research advances in food allergy that were published in the Journal in 2015. The world of food allergy research continues to rapidly accelerate, with increasing numbers of outstanding submissions to the Journal. In 2015, important studies on the epidemiology of food allergy were published, suggesting differential rates of food allergy in specific racial and ethnic groups. Even more importantly, studies were published identifying specific risk factors for the development of peanut allergy, as well as specific prevention strategies. We also saw new studies on the diagnosis of food allergy and potential approaches to the treatment of food allergy, as well as novel mechanistic studies helping to explain the immunologic correlates of food allergy and food desensitization.
B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts
The concentrations of B-vitamins, carotenoids and tocopherols in nuts may differ between species and might be influenced by roasting. Thiamine, riboflavin, pyridoxine, lutein, zeaxanthin, β-carotene and α-/γ-tocopherol were determined in different varieties of raw and roasted nuts using HPLC (fluorescence/UV-vis detection). The analysis revealed remarkable concentrations of thiamine and pyridoxine in pistachios (57%, 79% of the recommended daily intake/100g (RDI), respectively) and riboflavin in almonds (119% of the RDI). Pistachios were rich in lutein/zeaxanthin and contained highest β-carotene levels among nuts. Almonds and hazelnuts were abundant in α-tocopherol (>4-fold the RDI for tocopherol equivalents) while pistachios and walnuts were rich in γ-tocopherol. Roasting had a diminishing effect on thiamine, carotenoids and tocopherols especially in almonds and walnuts. Nuts could make a valuable contribution to a healthy diet in regard to B-vitamins, lutein/zeaxanthin and tocopherols. A reduction in micronutrient content by roasting is reliant on the nut variety and specific micronutrient.
Development of a multiplex real-time PCR for determination of apricot in marzipan using the PLEXOR® System.
Marzipan is a confectionary which is mostly offered in form of filled chocolate, pralines or pure. According to the German guidelines for oil seeds only almonds, sugar and water are admitted ingredients of marzipan. A product very similar in taste is persipan which is used in the confectionary industry because of its stronger flavor. For persipan production almonds are replaced by debittered apricot or peach kernels. To guarantee high quality products for consumers, German raw paste producers have agreed a limit of apricot kernels in marzipan raw paste of 0.5 %. Different DNA based methods for quantitation of persipan contaminations in marzipan are already published. In order to increase the detection specificity compared to published intercalation dye based assays, the present work demonstrate the utilization of a multiplex real-time PCR based on the Plexor® technology. Thus the present work enables the detection of at least 0.1% apricot DNA in almond DNA or less. By analyzing DNA-mixtures, the theoretical limit of quantification of the duplex PCR for the quantitation of persipan raw paste DNA in marzipan raw paste DNA was determined as 0.05%.
Identification and Characterization of Ana o 3 Modifications on Arginine Residue-111 in Heated Cashew Nuts.
Raw and roasted cashew nut extracts were evaluated for protein modifications by mass-spectrometry. Independent modifications on the Arg-111 residue of Ana o 3 were observed in roasted but not raw cashew nuts. The mass changes of 72.0064 or 53.9529 Da are consistent with formation of carboxyethyl and hydroimidazolone modifications at the Arg-111 residue. These same modifications were observed in Ana o 3 purified from roasted but not raw cashew nuts, albeit at a relatively low occurrence. Circular dichroism indicated that Ana o 3 purified from raw and roasted cashew nuts had similar secondary structure, and dynamic light scattering analysis indicated there was no observable difference in particle size. The stability of Ana o 3 purified from raw and roasted cashew nuts to trypsin was similar in the absence of or following treatment with a reducing agent. Only minor differences in IgE binding to Ana o 3 were observed by ELISA among a cohort of cashew allergic patient sera.