Quantifying aflatoxins in peanuts using fluorescence spectroscopy coupled with multi-way methods: Resurrecting second-order advantage in excitation-emission matrices with rank overlap problem.

A rapid, simple and inexpensive method using fluorescence spectroscopy coupled with multi-way methods for the determination of aflatoxins B1 and B2 in peanuts has been developed. In this method, aflatoxins are extracted with a mixture of water and methanol (90:10), and then monitored by fluorescence spectroscopy producing EEMs. Although the combination of EEMs and multi-way methods is commonly used to determine analytes in complex chemical systems with unknown interference(s), rank overlap problem in excitation and emission profiles may restrain the application of this strategy. If there is rank overlap in one mode, there are several three-way algorithms such as PARAFAC under some constraints that can resolve this kind of data successfully. However, the analysis of EEM data is impossible when some species have rank overlap in both modes because the information of the data matrix is equivalent to a zero-order data for that species, which is the case in our study. Aflatoxins B1 and B2 have the same shape of spectral profiles in both excitation and emission modes and we propose creating a third order data for each sample using solvent as a new additional selectivity mode. This third order data, in turn, converted to the second order data by augmentation, a fact which resurrects the second order advantage in original EEMs. The three-way data is constructed by stacking augmented data in the third way, and then analyzed by two powerful second order calibration methods (BLLS-RBL and PARAFAC) to quantify the analytes in four kinds of peanut samples. The results of both methods are in good agreement and reasonable recoveries are obtained.


Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration.

 


Oral Immunotherapy for Food Allergy.

Food allergy is a potentially life-threatening condition with no approved therapies, apart from avoidance and injectable epinephrine for acute allergic reactions. Oral immunotherapy (OIT) is an experimental treatment in which food-allergic patients consume gradually increasing quantities of the food to increase their threshold for allergic reaction. This therapy carries significant risk of allergic reactions. The ability of OIT to desensitize patients to particular foods is well-documented, although the ability to induce tolerance has not been established. This review focuses on recent studies for the treatment of food allergies such as cow's milk, hen's egg, and peanut.


Peanut proteins in periodate specific anion sensing: An ensuing reduction in allergic response.

Peanut proteins conarachin II, conarachin I and arachin were found to behave as highly selective fluorescence sensors for periodate amongst a set of different anions. The interactions of the proteins with periodate were also confirmed by other spectral methods and enzyme linked immunosorbent assay (ELISA). The results indicate a selective interaction of peanut proteins with periodate amongst chloride, sulphate, iodide, phosphate, nitrate, nitrite, bromide, fluoride, persulphate, acetate, thiosulphate, arsenite, arsenate, sulphite, and iodide. Periodate sensing using different synthesized organic molecules are already reported in the literature. In this article we report the efficiency of peanut proteins as anion sensor which are bioactive and inexpensive too. The protein periodate interactions have also resulted in a simultaneous reduction in allergenicity of the peanut proteins. A change in the secondary structure of the protein was found responsible for this change which was further established with the help of circular dichroism and Raman spectroscopy.


Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor

In this study, an atmospheric pressure fluidized bed plasma (APFBP) system was designed and its decontamination effect on aflatoxigenic fungi (Aspergillus flavus and Aspergillus parasiticus) on the surface of hazelnuts was investigated. Hazelnuts were artificially contaminated with A. flavus and A. parasiticus and then were treated with dry air plasma for up to 5min in the APFBP system at various plasma parameters. Significant reductions of 4.50 log (cfu/g) in A. flavus and 4.19 log (cfu/g) in A. parasiticus were achieved after 5min treatments at 100% V - 25kHz (655W) by using dry air as the plasma forming gas. The decontamination effect of APFBP on A. flavus and A. parasiticus spores inoculated on hazelnuts was increased with the applied reference voltage and the frequency. No change or slight reductions were observed in A. flavus and A. parasiticus load during the storage of plasma treated hazelnuts whereas on the control samples fungi continued to grow under storage conditions (30days at 25°C). Temperature change on hazelnut surfaces in the range between 35 and 90°C was monitored with a thermal camera, and it was demonstrated that the temperature increase taking place during plasma treatment did not have a lethal effect on A. flavus and A. parasiticus spores. The damage caused by APFBP treatment on Aspergillus spp. spores was also observed by scanning electron microscopy.


Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 1. Screening of optimal extraction conditions using a D-optimal experimental design.

A D-optimal design was constructed to optimize allergen extraction efficiency simultaneously from roasted, non-roasted, defatted, and non-defatted almond, hazelnut, peanut, and pistachio flours using three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various conditions of ionic strength, buffer-to-protein ratio, extraction temperature, and extraction duration. Statistical analysis showed that roasting and non-defatting significantly lowered protein recovery for all nuts. Increasing the temperature and the buffer-to-protein ratio during extraction significantly increased protein recovery, whereas increasing the extraction time had no significant impact. The impact of the three buffers on protein recovery varied significantly among the nuts. Depending on the extraction conditions, protein recovery varied from 19% to 95% for peanut, 31% to 73% for almond, 17% to 64% for pistachio, and 27% to 88% for hazelnut. A modulation by the buffer type and ionic strength of protein and immunoglobuline E binding profiles of extracts was evidenced, where high protein recovery levels did not always correlate with high immunoreactivity.


Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design

A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens.


Insoluble and soluble roasted walnut proteins retain antibody reactivity

Thermal processing techniques commonly used during food production have the potential to impact food allergens by inducing physical and/or chemical changes to the proteins. English walnuts (Juglans regia) are among the most commonly allergenic tree nuts, but little information is available regarding how walnut allergens respond to thermal processing. This study evaluated the effects of dry roasting (132 or 180°C for 5, 10, or 20min) on the solubility and immunoreactivity of walnut proteins. A dramatic decrease in walnut protein solubility was observed following dry roasting at 180°C for 20min. However, both the soluble and insoluble protein fractions from roasted walnuts maintained substantial amounts of IgG immunoreactivity (using anti-raw and anti-roasted walnut antisera), with similar patterns of reactivity observed for human IgE from walnut-allergic individuals. Thus, walnut proteins are relatively stable under certain thermal processing conditions, and IgE reactivity remains present even when insoluble aggregates are formed.


Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products

Pine nuts are a known source of food allergens and several cases of adverse immunological reaction after ingestion have been reported. To protect allergic consumers, methods to unequivocally detect the presence of pine nuts in complex matrices must be developed. A Taqman-based real time PCR method for the detection of Pinus spp. was set up. A homemade pesto spiked at known concentration of pine nut powder was used as model food. Moreover, DNA was purified from commercial foods declaring or not the presence of pine nuts. The method displayed a very high efficiency and specificity for the genus Pinus. The intrinsic LOD was 1pg of DNA, while the practical LOD evaluated on model foods was 0.1ppm of pine nuts powder, the lowest ever registered for the detection of food allergens via real-time PCR. Finally, the declared presence/absence of pine nut in commercial foods was confirmed.


Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls

Every year tons of pistachio hulls are separated and eliminated, as waste products, from pistachio seeds. In this study the hulls of ripe pistachios were extracted with two organic solvents (ethanol and methanol) and characterized for phenolic composition, antioxidant power and cytoprotective activity. RP-HPLC-DAD-FLU separation enabled us to identify 20 derivatives, including and by far the most abundant gallic acid, 4-hydroxybenzoic acid, protocatechuic acid, naringin, eriodictyol-7-O-glucoside, isorhamnetin-7-O-glucoside, quercetin-3-O-rutinoside, isorhamnetin-3-O-glucoside and catechin. Methanol extraction gave the highest yields for all classes of compounds and presented a higher scavenging activity in all the antioxidant assays performed. The same was found for cytoprotective activity on lymphocytes, lipid peroxidation and protein degradation. These findings highlight the strong antioxidant and cytoprotective activity of the extract components, and illustrate how a waste product can be used as a source of nutraceuticals to employ in manufacturing industry.