Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards.
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed. https://doi.org/10.3390/biology12010031
Development of Low-Cost Porous Carbons through Alkali Activation of Crop Waste for CO2 Capture.
To achieve the "double carbon" (carbon peak and carbon neutrality) target, low-cost CO2 capture at large CO2 emission points is of great importance, during which the development of low-cost CO2 sorbents will play a key role. Here, we chose peanut shells (P) from crop waste as the raw material and KOH and K2CO3 as activators to prepare porous carbons by a simple one-step activation method. Interestingly, the porous carbon showed a good adsorption capacity of 2.41 mmol/g for 15% CO2 when the mass ratio of K2CO3 to P and the activation time were only 0.5 and 0.5 h, respectively, and the adsorption capacity remained at 98.76% after 10 adsorption-desorption cycle regenerations. The characterization results suggested that the activated peanut shell-based porous carbons were mainly microporous and partly mesoporous, and hydroxyl (O-H), ether (C-O), and pyrrolic nitrogen (N-5) functional groups that promoted CO2 adsorption were formed during activation. In conclusion, KOH- and K2CO3-activated P, especially K2CO3-activated P, showed good CO2 adsorption and regeneration performance. In addition, not only the use of a small amount of the activator but also the raw material of crop waste reduces the sorbent preparation costs and CO2 capture costs. https://doi.org/10.1021/acsomega.2c06109
The Effects of Tree Nut and Peanut Consumption on Energy Compensation and Energy Expenditure: A Systematic Review and Meta-Analysis.
Nut consumption is not associated with a higher body weight, and potential energy-regulating mechanisms may include a reduced subsequent energy intake and increased EE. The aim of this study was to examine the effect of tree nut and peanut consumption on energy intake, compensation, and expenditure. PubMed, MEDLINE, CINAHL, Cochrane, and Embase databases were searched from inception to June 2, 2021. Human studies with adults aged ≥18 y older were included. Energy intake and compensation studies were restricted to acute effects (intervention duration of ≤24 h), whereas intervention duration was not limited for EE studies. Random effects meta-analyses were conducted to explore weighted mean differences in REE. Twenty-eight articles from 27 studies (16 energy intake studies, 10 EE studies, and 1 study investigating both) with 1121 participants were included in this review, with a variety of nut types addressed (almonds, Brazil nuts, cashews, chestnuts, hazelnuts, peanuts, pistachios, walnuts, and mixed nuts). Energy compensation occurred after nut-containing loads (range: −280.5% to +176.4%) and the degree of compensation varied depending on the form (whole and chopped) and how they were consumed (alone and within a meal). The meta-analyses identified a nonsignificant increase in REE associated with nut consumption (weighted mean difference: 28.6 kcal/d; 95% CI: −10.7, 67.8 kcal/d). This study provided support for energy compensation as a potential mechanism for a lack of association between nut consumption and body weight, whereas no evidence was found for EE as an energy-regulating mechanism of nuts. https://doi.org/10.1016/j.advnut.2022.10.006
11 clinical trials that will shape medicine in 2023.
Nature Medicine asks leading researchers to name their top clinical trial for 2023, from cervical and prostate cancer screening to new drugs for Parkinson’s disease and Alzheimer’s disease. 2022 has been a rollercoaster year for biopharma, as it has faced an industry-wide slowdown and late-stage clinical trial failures, as well as breakthroughs and regulatory approvals. COVID-19 has continued to disrupt nearly all aspects of clinical trial infrastructure, from patient recruitment to supply chains, but despite this, 2023 promises to bring many new readouts from different branches of medicine. We asked 11 leading experts for their top clinical trials to watch in the coming year. https://doi.org/10.1038/s41591-022-02132-3
Walnut consumption and health outcomes with public health relevance—a systematic review of cohort studies and randomized controlled trials published from 2017 to present.
Context: Considering the accumulation of recent studies investigating the health effects of walnut consumption, both including and beyond cardiovascular health effects, a systematic review of this literature to investigate the strength of the evidence is warranted. Objective: To investigate associations between walnut consumption and outcomes with public health relevance (specifically all-cause mortality, type 2 diabetes, CVD, metabolic syndrome, obesity, cancer, neurological and mental health, musculoskeletal, gastrointestinal, and maternal disorders) and the effect on associated disease risk markers, reported in studies published from 2017 to present. Data Sources: MEDLINE, FSTA, CENTRAL, and Scopus were searched from 1 January 2017 to 5 May 2021. Data Extraction: Human studies (cohort studies and RCTs) ≥3 weeks in duration comparing consumption of walnuts (whole, pieces, or 100% butter) to a control and measuring associations with relevant public health outcomes and disease risk markers were assessed. Key study characteristics were extracted independently by 2 investigators using a standardized table. The quality of the studies was assessed using the Cochrane Risk-of-Bias tool 2.0 and the Newcastle–Ottawa Scale. Data Analysis: Only 1 RCT was considered to be at low risk of bias for any of its outcomes. The cohort studies were considered to be of moderate or high quality. The results were synthesized using vote counting, based on the direction of effect. Thirty-three articles, 23 describing RCTs (walnut dose ∼10–99 g/day, 1,948 subjects) and 10 describing cohort studies (∼675,928 subjects), were included. Vote counting could be performed for the blood lipids, cardiovascular function, inflammation- and hemostatic-related factors, markers of glucose metabolism, and body weight and composition outcome groupings. The results are presented in effect direction plots. With respect to blood lipids, results from 8/8 RCTs favoured walnuts, in accordance with associations with a reduced risk of CVD suggested by cohort studies; results from 6/6 RCTs favoured control with respect to body weight and composition, although most of these effects were small. This was contrary to cohort study results suggesting small benefits of walnut consumption on body weight. There was no overall consistent direction of effect for cardiovascular function, markers of glucose metabolism, or inflammation- and hemostatic-related factors. Conclusions: Evidence published since 2017 is consistent with previous research suggesting that walnut consumption improves lipid profiles and is associated with reduced CVD risk. Evidence is accumulating in other areas, such as cognitive health, although more research is needed to draw firm conclusions. https://doi.org/10.1093/nutrit/nuac040
The impact of almonds and almond processing on gastrointestinal physiology, luminal microbiology, and gastrointestinal symptoms: a randomized controlled trial and mastication study.
E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels.
Almonds contain around 50% fat with a health-promoting fatty acid profile that can be extracted by pressing to obtain high-quality oils. To improve oil sensory properties, the almonds can be subjected to roasting treatments before oil extraction. However, intense thermal treatments may cause the appearance of undesirable volatile compounds causing unpleasant aromas. Thus, oils from almonds subjected to different roasting treatments (30, 45, 60 and 90 min at 150 °C) were analyzed from sensory and the chemical points of view. In addition, an electronic device (E-nose) was used in order to evaluate its usefulness in discriminating samples according to their aromas. The almonds' roasting treatments caused changes in the sensory properties, since defects such as a burned, dry smell or wood fragrance appeared when almonds were subjected to roasting treatments (>45 min). These data agree with the analysis of volatile compounds, which showed an increase in the content of aldehyde and aromatic groups in roasted almonds oils while alcohols and terpenes decreased. Partial least squares discriminant analysis and partial least squares obtained from the E-nose were able to classify samples (97.5% success) and quantify the burned defect of the oils (Rp2 of 0.88), showing that the E-nose can be an effective tool for classifying oils. https://doi.org/10.3390/nu15010130
Phosphorus and oxygen co-doped carbon particles based on almond shells with hydrothermal and microwave irradiation process for adsorption of lead (II) and cadmium (II).
In this study, the production of activated carbon based on almond shells by microwave heating with KOH activation and then the modification of activated carbon with phosphorus and oxygen as a result of hydrothermal heating with phosphoric acid were carried out to increase the Cd (II) and Pb (II) adsorption efficiency. The resulting materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric/differential thermal analyzer (TG-DTA), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and nitrogen adsorption. Adsorption performance, kinetics and thermodynamics of phosphorus, and oxygen-doped activated carbons were evaluated. The results showed that the adsorption of both Cd (II) and Pb (II) on phosphorus and oxygen-doped activated carbons obeyed the Langmuir isotherm and pseudo-second-order kinetics. The adsorption capacity values (Qi) obtained from the Langmuir isotherm for Cd (II) and Pb (II) adsorption were 185.18 mg/g and 54.64 mg/g, respectively. At the same time, the adsorption mechanism of Pb (II) and Cd (II) on the respective adsorbents was evaluated. As a result of phosphorus and oxygen atoms, Lewis base sites on carbon atoms and Lewis acid sites on phosphorus atoms are likely to form on the surface. These Lewis base sites can act as important active sites in adsorption reactions, especially of positively charged Pb (II) and Cd (II) ions. https://doi.org/10.1007/s11356-022-24968-5
Biological and Urea Treatments Reduce the Primary Inoculum of Red Leaf Blotch of Almond Caused by Polystigma amygdalinum.
Red leaf blotch (RLB), caused by Polystigma amygdalinum, is considered the most prevalent foliar disease in both traditional and new intensive almond-growing areas in Spain. Since the disease is monocyclic, its control must be based on the reduction of the only source of inoculum-the leaves infected in the previous season and fallen to the ground in autumn. Thus, this study aimed to determine the effect of two microorganisms and urea on RLB inoculum reduction by evaluating different application modes to fallen leaves in field conditions. Leaves of almond cv. Guara showing symptoms of RLB were collected in autumn, placed into nylon mesh bags, and treated by dipping or spraying with conidial suspensions of Myrothecium inundatum or the nonpathogenic strain Fusarium oxysporum FO12. The bags were exposed on the ground or buried in an experimental almond field for six months in each experimental year. Bags treated with crystalline urea solution at 46% N or not treated were included as controls. The primary inoculum (number of ascospores per gram of leaf) and the development of fruiting bodies (maturity stages of perithecia) were monitored in the fallen leaves for each experimental treatment combination. Myrothecium inundatum significantly reduced the primary inoculum in comparison with the nontreated control or F. oxysporum FO12, showing a similar effect to that observed for urea in the two experimental years. The type of application (spraying or dipping) did not show any significant effect, whereas the inoculum was significantly reduced in buried leaves in comparison to leaves maintained on the ground for all the treatments tested. This study represents the first report evaluating management strategies against RLB based on the reduction of the primary inoculum of P. amygdalinum. https://doi.org/10.1094/PDIS-04-22-0957-RE
Valorisation of hazelnut by-products: current applications and future potential.
Hazelnut is one of the most widely consumed nuts around the world. Considering the nutritional value of hazelnuts, a wide range of hazelnut-based food products are available in the market such as oil, chocolate, confectionery, etc. Nevertheless, the processing of hazelnuts generates a large number of by-products and waste. The most valuable by-products of the hazelnut industry are shell, skin, and meal. These by-products are rich in bioactive compounds, protein, dietary fibre, mono- and polyunsaturated fatty acids, vitamins, minerals, phytosterols, and squalene. The current utilization of hazelnut by-products is mostly limited to animal feed supplementation of hazelnut meal and skin and use as a low-value heat source for the shells. However, disposing of these by-products or using them as a low-value heat source or animal feed supplementation results in significant waste of a natural resource rich in nutritional components. Consequently, valorizing hazelnut by-products as bioactive ingredients in diverse fields such as food, pharmaceuticals and cosmetics has stimulated interest among scientists, producers, and consumers. This review provides an overview of current scientific knowledge about the main and most valuable hazelnut by-products and their actual valorization, with a focus on their chemical composition to inspire new applications of these valuable resources and fully exploit their potential. https://doi.org/10.1080/02648725.2022.2160920