Performance of two egg parasitoids of brown marmorated stink bug before and after cold storage

Introduction: The genus Trissolcus includes a number of egg parasitoids that are known to contribute to the control of Halyomorpha halys. The number of progenies, particularly females, is important for the efficient mass rearing of species used in augmentative biological control programs. Cold storage is an important technique for extending the shelf life of natural enemies used in such programs. Methods: We assessed how fecundity, sex ratio, lifespan, and the number of hosts parasitized within 24 h were affected by host density for T. japonicus and T. cultratus when offered fresh H. halys eggs and how these parameters were affected if adult parasitoids were first placed in cold storage (11°C in the dark) for 19 weeks before being used for propagation. Results: The fecundity were 110.2 and 84.2 offspring emerged at 25°C, for parasitoids not placed in cold storage; among the offspring that emerged, 82.6% and 85.6% were female for T. japonicus and T. cultratus, respectively. If first placed in cold storage, T. japonicus and T. cultratus produced 35.1 and 24.6 offspring per female, respectively, although cold storage significantly extended the shelf life. The survival rates of parasitoids that were placed in cold storage were 90.3% and 81.3% for females, and 3.2% and 0.9% for males of T. japonicus and T. cultratus, respectively. The number of hosts parasitized within 24 h was not shown to be density dependent, but it was significantly lower after cold storage. https://doi.org/10.3389/fphys.2023.1102216


Porous Graphitic phase carbon nitride/graphene oxide hydrogel microspheres for efficient and recyclable degradation of aflatoxin B1 in peanut oil

Removal of aflatoxin is an urgent issue in agricultural products. A porous graphitic carbon nitride/graphene oxide hydrogel microsphere (CN/GO/SA) was synthesized and used to degrade AFB1 in peanut oil. CN/GO/SA was characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD) and FT-IR. The introduction of GO significantly improved the adsorption capacity and visible light activity of photocatalysts. About 98.4% AFB1 in peanut oil was removed by 20% CN/GO/SA under visible light for 120 min. ‧O2– and h+ were the main active species during photoreaction, and five degradation products were identified by UPLC-Q-Orbitrap MS analysis. At the same time, the quality of treated peanut oil was still acceptable. More importantly, CN/GO/SA showed excellent cycle stability, and the degradation rate of AFB1 in peanut oil remained above 95% after five-time recycling. This work provides a practical way for developing efficient and sustainable photocatalysts to degrade mycotoxins in edible oil. https://doi.org/10.1016/j.foodchem.2023.135964


Dynamics of Micronutrient Uptake and Removal by Three Modern Runner Peanut Cultivars

Micronutrient fertilization is usually neglected by producers, especially for peanut, a crop that is frequently grown in crop rotation systems due to its low perceived nutrient requirements. New peanut cultivars are able to achieve high yields when grown under suitable conditions. However, fertilization recommendation tables are dated and do not consider the need for micronutrients. To support improvements in these recommendations, this study quantified the micronutrient demand (B, Cu, Fe, Mn, and Zn) of three runner peanut cultivars (IAC Runner 886, IAC 505, and IAC OL3) during the biological cycle and the transport of these micronutrients to pods and kernels. The experiment was carried out in a randomized complete block with a split-plot design and nine replications. The whole plots consisted of the three peanut cultivars, and the subplots comprised nine plant samplings (at 14, 28, 42, 56, 70, 84, 105, 126, and 147 days after emergence (DAE)). These modern peanut cultivars exhibited high uptake and accumulation of Fe, but the proportion of Fe removed by pods and kernels was lowest among all analyzed micronutrients. The second-most-accumulated micronutrient was Mn. The maximum requirement for micronutrients of peanut occurred around 84 DAE, and IAC 505 had the highest micronutrient uptake and accumulation among the cultivars (especially at later stages), followed by IAC OL3 and IAC Runner 886. Our results provide new insights into micronutrient requirements for peanut and demonstrate the need for new fertilizer recommendation programs for peanut cultivation. https://doi.org/10.3390/crops3020010


In-silico identification and characterization of O-methyltransferase gene family in peanut (Arachis hypogaea L.) reveals their putative roles in development and stress tolerance

Cultivated peanut (Arachis hypogaea) is a leading protein and oil-providing crop and food source in many countries. At the same time, it is affected by a number of biotic and abiotic stresses. O-methyltransferases (OMTs) play important roles in secondary metabolism, biotic and abiotic stress tolerance. However, the OMT genes have not been comprehensively analyzed in peanut. In this study, we performed a genome-wide investigation of A. hypogaea OMT genes (AhOMTs). Gene structure, motifs distribution, phylogenetic history, genome collinearity and duplication of AhOMTs were studied in detail. Promoter cis-elements, protein-protein interactions, and micro-RNAs targeting AhOMTs were also predicted. We also comprehensively studied their expression in different tissues and under different stresses. We identified 116 OMT genes in the genome of cultivated peanut. Phylogenetically, AhOMTs were divided into three groups. Tandem and segmental duplication events played a role in the evolution of AhOMTs, and purifying selection pressure drove the duplication process. AhOMT promoters were enriched in several key cis-elements involved in growth and development, hormones, light, and defense-related activities. Micro-RNAs from 12 different families targeted 35 AhOMTs. GO enrichment analysis indicated that AhOMTs are highly enriched in transferase and catalytic activities, cellular metabolic and biosynthesis processes. Transcriptome datasets revealed that AhOMTs possessed varying expression levels in different tissues and under hormones, water, and temperature stress. Expression profiling based on qRT-PCR results also supported the transcriptome results. This study provides the theoretical basis for further work on the biological roles of AhOMT genes for developmental and stress responses. https://doi.org/10.3389/fpls.2023.1145624


Nut factors associated with navel orangeworm, Amyelois transitella (Lepidoptera: Pyralidae) damage to pistachio (Pistacia vera) in California (2007-2017) and implication for control

Amyelois transitella is the primary pest of pistachios in California. The first A. transitella outbreak of the twenty-first century occurred in 2007 and a total of five outbreaks occurred between 2007 and 2017 (total insect damage >1%). This study used processor information to identify the nut factors associated with the outbreaks. Processor grade sheets were used to explore the relationship between the variables time of harvest, percent nut split, percent nut dark staining, percent nut shell damage, and percent adhering hull for Low Damage (82,537 loads) and High Damage years, (92,307 loads). Total insect damage (±SD) for the Low Damage years averaged 0.005 ± 0.01 and in High Damage years was three times higher, 0.015 ± 0.02. In Low Damage years the strongest correlation was between total insect damage and two variables, percent adhering hull and dark stain (0.25, 0.23) while in High Damage years the correlation between total insect damage and percent dark stain was the highest (0.32) followed by percent adhering hull (0.19). The linkage of these nut factors to insect damage suggests that outbreak prevention depends on early identification of premature hull split/breakdown in addition to the traditional emphasis on treating the standing population of A. transitella. https://doi.org/10.1093/jee/toad051


The potential of almonds, hazelnuts, and walnuts SFE-CO2 extracts as sources of bread flavouring ingredients

Nuts have been part of the human diet since our early ancestors, and their use goes beyond nutritional purposes, for example, as aromatic sources for dairy products. This work explores the potential of almond (Prunus dulcis (Mill.) DA Webb), hazelnut (Corylus avellana L.), and walnut (Juglans regia L.) extracts as sources of food flavouring agents, suggesting a new added-value application for lower quality or excess production fruits. The extracts were obtained by supercritical fluid extraction with carbon dioxide and characterized by: quantification of the volatile fraction by HS-SPME GC-MS; sensory perception and description; and cytotoxicity against Vero cells. All extracts revealed potential as flavouring ingredients due to terpene abundance. No significant differences were observed for the minimal sensory perception, in which the odour threshold values ranged from 8.3 × 10-4 to 6.9 × 10-3 μg·mL-1 for walnuts and almonds extracts, respectively. In contrast, the cytotoxic potential differed significantly among the extracts, and P. dulcis extract presented lower cytotoxicity. Notes as woody, fresh, and green were identified in the volatile intensifiers obtained from the P. dulcis extract. Thus, almond extract was identified as the most promising ingredient to increase the sensory value of food products, namely bread. This potential was verified by an increase in the odour perception of bread after adding 4 μL of extract to each 100 g of bread dough. The quantified eucalyptol and d-limonene terpenes - found in the P. dulcis extract - have improved the release of the pleasant and natural volatile compounds from bread crust and crumb compared to the control bread chemical and sensory profiles. https://doi.org/10.1016/j.foodchem.2023.135845


Characterization of phenolic constituents in hazelnut kernels

Hazelnuts contain biologically active phenolic compounds and are widely used for their nutritional value. In this study, the phenolic compounds contained in hazelnuts were isolated from the kernels of Corylus avellana L. and investigated. Spectral analyses revealed two new acetophenone glycosides, characterized as 2',4',6'-trihydroxyacetophenone 4'-O-(2-O-β-D-apiosyl)-β-D-glucoside and 2',4',6'-trihydroxyacetophenone 4'-O-(2-O-β-D-apiosyl-6-O-α-L-arabinosyl)-β-D-glucoside, and four known compounds. Four high-molecular mass condensed tannin fractions were detected in the water-soluble fraction of the extract, characterized as B-type procyanidin consisting of extension and terminal units. Gel permeation chromatography analyses revealed that the average molecular mass, based on the polystyrene standard, was approximately 15 000-113 000. These high-molecular mass condensed tannin fractions were chemically characterized and exhibited different molecular weights. The fractions of high-molecular mass condensed tannins were obtained from hazelnuts and tested for 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. The EC50 values indicated significant activity for all the fractions. https://doi.org/10.1093/bbb/zbad043


Evaluation of the digestibility and antioxidant activity of protein and lipid after mixing nuts based on in vitro and in vivo models

This study aimed to evaluate the change of digestibility and antioxidant activity of protein and lipid after mixing walnuts, cashews, and pistachios using in vitro and in vivo models. The results showed that mixed nuts significantly reduced the digested particle size and the degree of hydrolysis of protein and triacylglycerol compared to single nuts in vitro. As a consequence of co-digestion, bioaccessibility and antioxidant activity for amino acids and fatty acids were increased by 1.12-1.87-fold and 1.62-3.81-fold, respectively. In vivo studies, the mixed nuts diet increased the concentration of amino acids and fatty acids in the small intestine by 27.69%-158.26% and 18.13%-152.09%, respectively, and enhanced levels of antioxidant enzymes in the liver and serum, all without causing weight gain. These findings highlight the positive interaction between single and mixed nuts, where mixed nuts enhanced the digestibility and antioxidant activity of single nuts both in vitro and in vivo. https://doi.org/10.1016/j.foodchem.2023.135706


Composition and Biological Properties of Blanched Skin and Blanch Water Belonging to Three Sicilian Almond Cultivars

The almond industry produces, by bleaching and stripping, two by-products: blanched skin (BS) and blanch water (BW). The aim of this study was to investigate the nutritional and polyphenolic profile, as well as the antioxidant, antimicrobial, antiviral, and potential prebiotic effects of BS and BW from three different Sicilian cultivars. The total phenols and flavonoids contents were ≥1.72 and ≥0.56 g gallic acid equivalents and ≥0.52 and ≥0.18 g rutin equivalents/100 g dry extract (DE) in BS and BW, respectively. The antioxidant activity, evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging ability, trolox equivalent antioxidant capacity, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, was ≥3.07 and ≥0.83 g trolox equivalent/100 g DE in BS and BW, respectively. Isorhamnetin-3-O-glucoside was the most abundant flavonoid detected in both by-products. No antimicrobial effect was recorded, whereas BS samples exerted antiviral activity against herpes simplex virus 1 (EC50 160.96 μg/mL). BS also showed high fibre (≥52.67%) and protein (≥10.99) contents and low fat (≤15.35%) and sugars (≤5.55%), making it nutritionally interesting. The present study proved that the cultivar is not a discriminating factor in determining the chemical and biological properties of BS and BW. https://doi.org/10.3390/nu15061545


Evaluation of biological control agents for the protection of almond pruning wounds against infection by fungal canker pathogens

Fungal canker pathogens of almond initiate infection in trees primarily through pruning wounds. Biological control agents (BCAs) have the potential to provide long-term protection of pruning wounds by colonizing the wound surfaces and underlying tissues. Laboratory and field tests were performed to assess the efficacy of various commercial and experimental BCAs as wound protectants against almond canker pathogens. Four Trichoderma-based BCAs were evaluated using detached almond stems in the laboratory against the canker pathogens Cytospora plurivora, Eutypa lata, Neofusicoccum parvum and Neoscytalidium dimidiatum. Results indicated that Trichoderma atroviride SC1 and T. paratroviride RTFT014 significantly reduced infections by all four pathogens. The ability of these four BCAs to protect almond pruning wounds against E. lata and N. parvum were further evaluated in field trials using two almond cultivars and during two consecutive years. Both T. atroviride SC1 and T. paratroviride RTFT014 protected almond pruning wounds against E. lata and N. parvum as efficiently as thiophanate-methyl, the recommended fungicide for treatment of almond pruning wounds. Comparisons of different application timings of BCA in relation to pathogen inoculations revealed a significant improvement in wound protection when inoculations were conducted 7d versus 24h post BCA application for N. parvum, but not for E. lata. Trichoderma atroviride SC1 and T. paratroviride RTFT014 are promising candidates for the preventive protection of almond pruning wounds and for inclusion in integrated pest management programs and organic almond production systems. https://doi.org/10.1094/PHYTO-02-23-0075-R