Quantitative Phosphoproteomic Analysis Reveals Potential Regulatory Mechanisms of Early Fruit Enlargement in Pecan (Carya illinoinensis)

Pecan (Carya illinoinensis) is a popular tree nut. Its fruit development undergoes slow growth, rapid expansion, core hardening, and kernel maturation stages. However, little is known about how pecan initiates fruit development and enlargement after pollination. In this study, we performed the first large-scale identification of potential phosphorylation sites and proteins at early development of pecan fruit by a label-free phosphoproteomic quantification technique. A total of 2155 phosphosites were identified from 1953 phosphopeptides covering 1311 phosphoproteins in unpollinated pistils and fruits at 5 and 9 weeks after pollination. Of these, 699 nonredundant phosphoproteins were differentially phosphorylated (DP). Furthermore, the phosphorylation intensity of DP proteins in brassinolide (BR) and auxin signaling were analyzed, and the function of CiBZR1 was investigated. Ectopic expression of CiBZR1 resulted in BR response phenotypes with curled leaves and fruit, while enlarged seed size in Arabidopsis. Subcellular localization and transcriptional activation activity assay demonstrated that CiBZR1 distributed in both the nucleus and cytoplasm with transcriptional activity. When two phosphosites mutated, CiBZR1S201P,S205G moved to the nucleus completely, while the transcriptional activity remained unchanged. Taken together, our data reveal extensive phosphoproteins and lay a foundation to comprehensively dissect the potential post-translational regulation mechanism of early development of pecan fruit. https://doi.org/10.1021/acs.jafc.2c08876


Changes in chemical characteristics and modeling sensory parameters of stored pecan nutmeats

Pecan is a major specialty crop produced in the United States. Sensory evaluation and chemical analyses of pecan nutmeats are integral components of shelf life and have been employed to investigate changes during storage, but there remains a lack of knowledge regarding storage stability. Specifically, the association between shelf life and chemical characteristics has not been investigated. We aimed to investigate the chemical changes in pecan nuts during a range of storage treatments (temperature, relative humidity, packaging material, and modified atmosphere). The results of the chemical analyses were used to build a volatile compound-based sensory prediction model. The work has utility as a rapid method to measure lipid oxidation in pecan, which is of value to the pecan industry. The research also determined a possible association between pecan nut volatile compounds and sensory attributes of pecans, and their perception by human subjects. Building a sensory-based prediction model would reduce dependency on expensive and time-consuming sensory methods. https://doi.org/10.1111/1750-3841.16533


Lipid Oxidation and Volatile Compounds of Almonds as Affected by Gaseous Chlorine Dioxide Treatment to Reduce Salmonella Populations.

The effects of gaseous chlorine dioxide (ClO2) treatment, applied to inactivate Salmonella, on lipid oxidation, volatile compounds, and chlorate levels of dehulled almonds were evaluated during a 3 month accelerated storage at 39 °C. At treatment levels that yielded a 2.91 log reduction of Salmonella, ClO2 promoted lipid oxidation as indicated by increased peroxide values, total acid number, conjugated dienes, and thiobarbituric acid-reactive substances. Furthermore, several chlorine-containing volatile compounds including trichloromethane, 1-chloro-2-propanol, 1,1,1-trichloro-2-propanol, and 1,3-dichloro-2-propanol were identified in ClO2-treated samples. However, all the volatile chlorine-containing compounds decreased during the 3 months of storage. Chlorate (26.4 ± 5.1 μg/g) was found on the ClO2-treated samples. The amounts of non-ethanol alcohols, aldehydes, and carboxylic acids increased following ClO2 treatments. Some volatiles such as 2,3-butanediol that were present in non-treated samples became non-detectable during post-ClO2 treatment storage. Overall, our results demonstrated that gaseous ClO2 treatment promoted lipid oxidation, generation of volatiles of lipid origin, and several chlorine-containing compounds. https://doi.org/10.1021/acs.jafc.3c00267


Influence of Geographical Orchard Location on the Microbiome from the Progeny of a Pecan Controlled Cross.

Carya illinoinensis (Wangenh.) K.Koch production has expanded beyond the native distribution as the genetic diversity of the species, in part, has allowed the trees to grow under broad geographic and climatic ranges. Research in other plant species has demonstrated that the phytobiome enhances their ability to survive and thrive in specific environments and, conversely, is influenced by the prevailing environment and plant genetics, among other factors. We sought to analyze the microbiota of pecan seedlings from the controlled cross 'Lakota' × 'Oaxaca' that were made in Georgia and Texas, respectively, to determine if the maternal geographical origin influences the microbiome of the resulting progeny. No significant differences in bacterial communities were observed between the seeds obtained from the two different states (p = 0.081). However, seed origin did induce significant differences in leaf fungal composition (p = 0.012). Results suggest that, in addition to some environmental, epigenetics, or host genetic components, ecological processes, such as dispersal mechanisms of the host, differentially impact the pecan microbiome, which may have ramifications for the health of trees grown in different environments. Future studies on the role of the microbiome in plant health and productivity will aid in the development of sustainable agriculture for improved food security. https://doi.org/10.3390/plants12020360


The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress.

Background: Arbuscular Mycorrhizal Fungi (AMF) are beneficial microorganisms in soil-plant interactions; however, the underlying mechanisms regarding their roles in legumes environmental stress remain elusive. Present trials were undertaken to study the effect of AMF on the ameliorating of salt, drought, and cold stress in peanut (Arachis hypogaea L.) plants. A new product of AMF combined with Rhizophagus irregularis SA, Rhizophagus clarus BEG142, Glomus lamellosum ON393, and Funneliformis mosseae BEG95 (1: 1: 1: 1, w/w/w/w) was inoculated with peanut and the physiological and metabolomic responses of the AMF-inoculated and non-inoculated peanut plants to salt, drought, and cold stress were comprehensively characterized, respectively. Results: AMF-inoculated plants exhibited higher plant growth, leaf relative water content (RWC), net photosynthetic rate, maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), activities of antioxidant enzymes, and K+: Na+ ratio while lower leaf relative electrolyte conductivity (REC), concentration of malondialdehyde (MDA), and the accumulation of reactive oxygen species (ROS) under stressful conditions. Moreover, the structures of chloroplast thylakoids and mitochondria in AMF-inoculated plants were less damaged by these stresses. Non-targeted metabolomics indicated that AMF altered numerous pathways associated with organic acids and amino acid metabolisms in peanut roots under both normal-growth and stressful conditions, which were further improved by the osmolytes accumulation data. Conclusion: This study provides a promising AMF product and demonstrates that this AMF combination could enhance peanut salt, drought, and cold stress tolerance through improving plant growth, protecting photosystem, enhancing antioxidant system, and regulating osmotic adjustment. https://doi.org/10.1186/s12870-023-04053-w


Metabolomics and Transcriptomics Analyses Reveal Regulatory Networks Associated with Fatty Acid Accumulation in Pecan Kernels.

Pecans are a globally important tree nut crop. Pecan nuts are rich in fatty acids (FAs), proteins, and flavonoids in addition to thiamine and numerous micronutrients. Although several of these nutriments have been studied in this plant, the comprehensive metabolite variations and molecular mechanisms associated with them have not been fully elucidated. In this study, untargeted metabolomics and transcriptomics were integrated to reveal the metabolite accumulation patterns and their associated molecular mechanisms during pecan kernel development. In total, 4260 (under positive mode) and 2726 (under negative mode) high quality features were retained. Overall, 163 differentially accumulated metabolites were identified. Most components were classified into the categories "organic acids and derivatives" and "lipids and lipid-like molecules." The accumulation patterns of amino acids, FAs, carbohydrates, organic acids, vitamins, flavonoids, and phenylpropanoids alongside embryo development were determined. Furthermore, transcriptomes from four pecan kernel developmental stages were used to assess transcript expression levels. Coexpression analyses were performed between FAs and their related genes. This study provides a comprehensive overview of the metabolic changes and regulations during pecan kernel development. We believe that the identification of nutriment accumulation trends and hub genes associated with the biosynthesis of the components will be valuable for genetically improving this plant. https://doi.org/10.1021/acs.jafc.2c06947


Domestication and selection footprints in Persian walnuts (Juglans regia).

Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop. https://doi.org/10.1371/journal.pgen.1010513


Protocatechuic acid, ferulic acid and relevant defense enzymes correlate closely with walnut resistance to Xanthomonas arboricola pv. juglandis.

Background: Juglans regia L. is an important nut tree that has a wide range of distribution in temperate regions of the world. In some walnut orchards, walnut blight can become a problematic disease that affects the growth of walnut trees. To explore the correlation between biochemical response and walnut resistance, we inoculated four walnut cultivars with Xanthomonas arboricola pv. juglandis (Xaj). The walnut cultivars were, namely, 'Xiangling', 'Xiluo 2', 'Yuanfeng' and 'Xifu 2'. Total phenol content (TPC) and total flavonoid content (TFC) were measured, whereby nine major phenolic compounds and several relevant enzymes were identified. Results: The results showed that the most resistant and susceptible walnut varieties were 'Xiluo 2' and 'Xifu 2' respectively. The reaction of walnut to Xaj was characterized by the early accumulation of phenolic compounds in the infected site. After inoculation with Xaj, we found that the resistant variety 'Xiluo 2' show the significant differences with other varieties at different time points through the determination of related antioxidant enzymes such as catalase (CAT) and peroxidase (POD). Meanwhile, the phenylalanine ammonia lyase (PAL) of 'Xiluo 2' increased significantly at 8 day post infection (dpi) and made differences from the control samples, while other varieties changed little. And the polyphenol oxidase (PPO) was significantly higher than in the control at 16 dpi, maintaining the highest and the lowest activity in 'Xiluo 2' and 'Xifu 2' respectively. It was also found that the content of protocatechuic acid in all cultivars increased significantly at 4 dpi, and 'Xiluo 2' was significantly higher than that of the control. In the early stage of the disease, ferulic acid content increased significantly in 'Xiluo 2'. Conclusion: Our findings confirmed that the metabolism of phenolic compounds and related defense enzymes are of great significance in the response of walnut to Xaj. https://doi.org/10.1186/s12870-022-03997-9


First report of Fusarium concentricum as a causal agent of Fusarium leaf blotch on pecan (Carya illinoinensis) in Southeast China.

The economically important nut crop pecan (Carya illinoinensis (Wangenh.) K. Koch) is seriously affected by increasing incidence of fungal disease worldwide (Xiao et al 2021). The top leaves of the pecan variety 'Pawnee' in the orchard of Zhejiang A&F University, Zhejiang, China were damaged by massive dark brown plaques in summer to autumn 2021. The causal agent was isolated from leaves with target plaques following the steps: sterilized with 70% alcohol (30 s × 2), rinsed with sterilized water (3 ×) before and after 5% sodium hypochlorite (30 s), excised the plaques, and placed on PDA medium at 28℃ in a dark incubator for 3-d. The mycelium on the edge of each colony was transferred to fresh SNA medium in dark for 2 weeks to induce conidia formation. A few conidia-germinated mycelia were transferredand inoculated on new plates containing fresh PDA medium to obtain the purified cultures. Koch's postulates were applied to validate the pathogenicity of the purified isolates. Non-woundedly healthy leaves (disinfected with 5% sodium hypochlorite) of 'Pawnee' seedlings were inoculated with 5 mm 7-d old purified cultures. Dark-brown spots appeared on the leaves 2 days post inoculation at 25℃. The spots became larger accompanied by partially cracking and slight deformation of inoculated leaves from day 2 to day 4, while the control leaves remained asymptomatic. A re-isolated strain ZJ-6 from these infected leaves was identified as the pathogenic isolate with the same symptom as the previous one. Morphologically, aerial mycelia of the pathogenic isolate ZJ-6 cashmere and white. The reverse of colony orange. The edge of the colony appeared gradually thinner, the aerial mycelia loose and flocky, and the matrix mycelium whitened. Hyphae were septate, translucent with smooth wall and 1.47-7.14 µm in width. Microconidia (n = 20) obovoid to fusoid, mainly with 0-septate, 4.45-7.78×4.79-16.25 µm. Macroconidia (n = 20) sickle, mainly with 3-5 septa, 5.56-10.28×56.67-114.54 µm. Simultaneous of monophialidic and polyphialidic conidiophores. Conidiophore width 1.47-3.68 µm, slightly smaller than vegetative hyphae. The morphological characteristics matched with previous descriptions of Fusarium species (Nirenberg and O'Donnell 1998; Wang et al 2013). The identity of ZJ-6 was confirmed by phylogenetic reconstruction using the concatenated sequences of the ATP citrate lyase (ACL1), Calmodulin (CaM), the internal transcribed spacer (ITS) rDNA region, ribosomal RNA gene (LSU), the largest subunit of DNA-dependent RNA polymerase II (RPB1), partial translation elongation factor-1 alpha (TEF) and β-Tubulin (TUB). To this end, the genomic DNA of ZJ-6 was extracted by the M5 hipermix-MF859 (Mei5 Biotechnology) and submitted to GenBank under the accession numbers OP933646, OP933647, OP925890, OP925889, OP933396, OP933648, and OP933397, respectively. The obtained sequences of ZJ-6 were used for nucleotide BLAST against thetandard databases, respectively, and the strains with sequence identification values above 98% were selected to construct multiple alignment for building a phylogenetic tree. This analyses allowed the identification of ZJ-6 as Fusarium concentricum Nirenberg & O'Donnell, a species with few reports that can cause serious damage to the fruits and branches of other hosts (Hasan et al 2020; Huda-Shakirah et al 2020; Wang et al 2013). This is the first report of pathogenic F. concentricum on pecan in Southeast China that caused no harvest of infected plants. https://doi.org/10.1094/PDIS-12-22-2810-PDN


Impedimetric nanoimmunosensor platform for aflatoxin B1 detection in peanuts.

This article developed a novel electrochemical immunosensor for the specific detection of aflatoxin B1 (AFB1). Amino-functionalized iron oxide nanoparticles (Fe3O4-NH2) were synthesized. Fe3O4-NH2 were chemically bound on self-assembly monolayers (SAMs) of mercaptobenzoic acid (MBA). Finally, polyclonal antibodies (pAb) were immobilized on Fe3O4-NH2-MBA. The sensor system was evaluated through atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A reduction in the anodic and cathodic peak currents was observed after the assembly of the sensor platform. The charge transfer resistance (Rct) was increased due to the electrically insulating bioconjugates. Then, the specific interaction between the sensor platform and AFB1 blocks the electron transfer of the [Fe(CN)6]3−/4− redox pair. The nanoimmunosensor showed a linear response range estimated from 0.5 to 30 μg/mL with a limit of detection (LOD) of 9.47 μg/mL and a limit of quantification (LOQ) of 28.72 μg/mL for AFB1 identification in a purified sample. In addition, a LOD of 3.79 μg/mL, a LOQ of 11.48 μg/mL, and a regression coefficient of 0.9891 were estimated for biodetection tests on peanut samples. The proposed immunosensor represents a simple alternative, successfully applied in detecting AFB1 in peanuts, and therefore, represents a valuable tool for ensuring food safety. https://doi.org/10.1002/btpr.3334