The Existing Methods and Novel Approaches in Mycotoxins’ Detection.

Mycotoxins represent a wide range of secondary, naturally occurring and practically unavoidable fungal metabolites. They contaminate various agricultural commodities like cereals, maize, peanuts, fruits, and feed at any stage in pre- or post-harvest conditions. Consumption of mycotoxin-contaminated food and feed can cause acute or chronic toxicity in human and animals. The risk that is posed to public health have prompted the need to develop methods of analysis and detection of mycotoxins in food products. Mycotoxins wide range of structural diversity, high chemical stability, and low concentrations in tested samples require robust, effective, and comprehensible detection methods. This review summarizes current methods, such as chromatographic and immunochemical techniques, as well as novel, alternative approaches like biosensors, electronic noses, or molecularly imprinted polymers that have been successfully applied in detection and identification of various mycotoxins in food commodities. In order to highlight the significance of sampling and sample treatment in the analytical process, these steps have been comprehensively described. https://doi.org/10.3390/molecules26133981


Analysis and quantification of naturally occurring aflatoxin B1 in dry fruits with subsequent physical and biological detoxification.

Current research involves extraction, identification and detoxification of mycotoxins from ten dry fruit samples. Mycotoxins were identified by high performance thin layer chromatography followed by physical and biological detoxification, analysed by HPLC. Three fungal species were observed after isolation including, Aspergillus niger, Aspergillus flavus and Fussarium sp. HP-TLC analysis revealed the presence of mycotoxin, aflatoxin B1 ranging from 0.000303-0.03636 mg/kg in all samples. Results were further analysed through various statistical tests. Detoxification methods proved to be cost effective and easily implementable. Concentration of aflatoxin B1 in pine nuts was reduced to 0.0043 mg/kg and 0.0039 mg/kg in dry dates through UV based detoxification. Solarisation reduced the concentration of aflatoxin B1 in figs to 0.0044 mg/kg. 90% aflatoxins were detoxified by UV treatment while Zingiber officinale powder detoxified 90% mycotoxin. This research concludes that the studied detoxification methods can be generalised on larger scale to benefit the dry fruit industry worldwide. https://doi.org/10.1080/14786419.2021.1935930


Sensitive Metal Oxide-Clay Nanocomposite Colorimetric Sensor Development for Aflatoxin Detection in Foods: Corn and Almond.

The work reports on zinc oxide bentonite nanocomposite (ZnOBt) chemical route synthesis, characterization, and investigation of curcumin (Cur) functionalization for a label-free colorimetric detection of total aflatoxins (AFs) in foods. XRD of ZnO nanoparticles (NPs) confirmed the wurtzite structure (2θ = 36.2°) and that of ZnOBt showed the intercalated interlayer composite phase. The Debye-Scherrer relation calculated the crystallite size as 20 nm (ZnO) and 24.4 nm (ZnOBt). Surface morphology by SEM exhibited flower-like hexagonal, rod-shaped ZnO NPs on the bentonite surface. Colorimetric reaction involved two-stage redox reactions between ZnOBt and dye Cur followed by AFs phenolic group and Zn(Cur)OBt. Cur gets oxidized at its diketone moiety in the presence of ZnOBt to form a red colored complex Zn(Cur)OBt, which further scavenge protons from AFs phenolic group, and gets oxidized to AFs-Zn(Cur)OBt (yellow). Binding of AFs-Zn(Cur)OBt is characterized by FT-IR ascribed to C-H bending (1966.615 cm-1), O-H stretching (3256.974 cm-1), and C=O stretching (1647.362 cm-1). 1H NMR chemical shifts (δ) (ppm) showed an increase in proton at the aliphatic region (0 to 4.4) while removal of proton in ether at 4.4 to 6 regions. Job plot calculation using UV-Vis data resulted in a higher total AF binding coefficient of Zn(Cur)OBt (K a = 3.77 × 106 mol-1 L) compared to Zn(Cur)O (K a = 0.645 × 106 mol-1 L) as well as a molar ratio of 1:1 by the Benesi-Hildebrand plot equation. Corn and almond food samples showed the total AFs LOD of 2.74 and 4.34 ppb, respectively. The results are validated with standard LC/MS-MS in compliance with MRL value as per the regulatory standard (EU).The NP-based method is facile and rapid and hence can be utilized for onsite detection of total AFs in foods. https://doi.org/10.1021/acsomega.1c00750


Chemometric Approach Based on Accuracy Profile and Data Chronological Distribution as a Tool to Detect Performance Degradation and Improve the Analytical Quality Control for Aflatoxins’ Analysis in Almonds Using UPLC–MS/MS.

One of the main objectives of routine laboratories is the development of simple and reliable methods as well as meeting fit-for-purpose criteria for regulatory surveillance. In this study, the accuracy profiles and the evaluation of the distribution of results in the case of aflatoxins in almonds have been performed using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method consists of designing the experiment and using certified reference material (CRM) to evaluate the bias, to calculate the combined uncertainty, and to construct the control charts. Good sensitivity (limit of quantifications (LOQs) 0.34-0.5 μg/kg) and recovery (between 82 and 107%) were achieved. The proposed method was successfully tested with a proficiency test in almond powder with acceptable z scores (-2 ≤ z ≤ 2). The results provided direct evidence for the proper functioning and stability of the whole analytical protocol, allowing acceptable combined uncertainty. https://doi.org/10.1021/acsomega.1c01056


Estimation of Tolerable Daily Intake (TDI) for Immunological Effects of Aflatoxin.

Aflatoxins are toxic chemicals produced by the fungi Aspergillus flavus and Aspergillus parasiticus. In warm climates, these fungi frequently contaminate crops such as maize, peanuts, tree nuts, and sunflower seeds. In many tropical and subtropical regions of the world, populations are coexposed to dietary aflatoxin and multiple infectious pathogens in food, water, and the environment. There is increasing evidence that aflatoxin compromises the immune system, which could increase infectious disease risk in vulnerable populations. Our aim was to conduct a dose-response assessment on a noncarcinogenic endpoint of aflatoxin: immunotoxicological effects. We sought to determine a noncarcinogenic tolerable daily intake (TDI) of aflatoxin, based on the existing data surrounding aflatoxin and biomarkers of immune suppression. To conduct the dose response assessment, mammalian studies were assessed for appropriateness of doses (relevant to potential human exposures) as well as goodness of data, and two appropriate mouse studies that examined decreases in leukocyte counts were selected to generate dose response curves. From these, we determined benchmark dose lower confidence limits (BMDL) as points of departure to estimate a range of TDIs for aflatoxin-related immune impairment: 0.017-0.082 μg/kg bw/day. As aflatoxin is a genotoxic carcinogen, and regulations concerning its presence in food have largely focused on its carcinogenic effects, international risk assessment bodies such as the Joint Expert Committee on Food Additives (JECFA) have never established a TDI for aflatoxin. Our work highlights the importance of the noncarcinogenic effects of aflatoxin that may have broader public health impacts, to inform regulatory standard-setting. https://doi.org/10.1111/risa.13770


Contamination by Aflatoxins B/G in Food and Commodities Imported in Southern Italy from 2017 to 2020: A Risk-Based Evaluation.

This study reports the results of aflatoxins B/G monitoring in food of vegetal origin, imported in Southern Italy from extra-European Union countries. From 2017 to 2020, we analyzed 1675 samples using an accredited HPLC method with fluorescence detection. We found out 295 samples (17.6%) were contaminated by aflatoxin B1, 204 by aflatoxins B/G (12.2%), while 75 (4.5%) resulted non-compliant to maximum limits set by the European Union law. Most of the batches tested were unprocessed food; the distribution of contamination levels, incidence of non-compliant samples, inference for different kinds of food are reported. The study focuses on the food more susceptible to contamination by aflatoxins; nuts are the food more controlled, showing the higher number of non-compliant samples. Our study confirms that pistachio nuts, hazelnuts and almonds are the major sources of exposure for consumers. Still, other products, such as chili pepper and Brazil nuts, need to get more information about their contamination levels. The study's findings are discussed in the perspective of the last opinion by EFSA about chronic exposure to aflatoxins. A case study to evaluate not compliance of a composed food to the European Union law is reported. https://doi.org/10.3390/toxins13060368


Impacts of Climate Change Interacting Abiotic Factors on Growth, aflD and aflR Gene Expression and Aflatoxin B1 Production by Aspergillus flavus Strains In Vitro and on Pistachio Nuts.

Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98-0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98-0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production. https://doi.org/10.3390/toxins13060385


Determination of volatile organic compounds by HS‐GC‐IMS to detect different stages of Aspergillus flavus infection in Xiang Ling walnut.

The aim of this study was to evaluate the performance of volatile organic compounds (VOCs) for evolution monitoring and early detection of Aspergillus flavus (A. flavus) contamination in walnuts. We successfully applied headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to evaluate walnut VOC changes caused by A. flavus contamination. A total of 48 VOCs were identified in walnuts contaminated with A. flavus. After identification of VOCs, a heat map and principal component analysis (PCA) highlighted ethyl acetate-D, 3-methyl-2-butanol, and cyclohexanone as potential biomarkers specific to A. flavus contamination in walnuts. These results provided valid targets for the development of sensors to evaluate the early mold contamination in stored walnuts.
https://doi.org/10.1002/fsn3.2229


Impact of granite irradiation on aflatoxin reduction in pistachio.

In this research with the effect of radioactive granite gamma radiation, the reduction of aflatoxin B1 in pistachios was examined in three steps. In the first step, the aflatoxin reduction in small packets by granite bed was tested. In this step, the aflatoxin level of 300 g pistachios packets was reduced up to 81.3±1.5 percent by 4 kg granite bed after 4 days. After observation of aflatoxin reduction by granite bed, the second step was done with increasing the granite and pistachio mass and irradiation time. In this step, the aflatoxin level of 1 kg pistachios was reduced up to 4949±2.6 percent by 6 kg granite after 9 days. According to the results, the aflatoxin reduction of 1 kg pistachios by 1 kg granite after 1 days (as aflatoxin Reduction Coefficient (ARC)) was calculated as ARC =0.0090±0.0025 (kg. day)-1.The aflatoxin types of detected in this research were B1 and B2 types that AFB2 level was much less than one. Therefore the effect of granite irradiation on AFB2 reduction wasn't considered. The final step was designed for testing the aflatoxin Reduction Coefficient (ARC). This step was shown that the confidence level between practical result and aflatoxin Reduction Coefficient (ARC) result is about 97 percent. The results indicated that the level of fat and protein of pistachios by granite gamma radiation did not change after 9 days. Therefore the granite irradiation can be used for aflatoxin reduction of pistachios.
https://doi.org/10.1016/j.toxicon.2021.05.007


A Recent Overview of Producers and Important Dietary Sources of Aflatoxins

Aflatoxins (AFs) are some of the most agriculturally important and harmful mycotoxins. At least 20 AFs have been identified to this date. Aflatoxin B1 (AFB1), the most potent fungal toxin, can cause toxicity in many species, including humans. AFs are produced by 22 species of Aspergillus section Flavi, 4 species of A. section Nidulantes, and 2 species of A. section Ochraceorosei. The most important and well-known AF-producing species of section Flavi are Aspergillus flavus, A. parasiticus, and A. nomius. AFs contaminate a wide range of crops (mainly groundnuts, pistachio nuts, dried figs, hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts, and maize). Foods of animal origin (milk and animal tissues) are less likely contributors to human AF exposure. Despite the efforts to mitigate the AF concentrations in foods, and thus enhance food safety, AFs continue to be present, even at high levels. AFs thus remain a current and continuously pressing problem in the world.
https://doi.org/10.3390/toxins13030186