Effects of Almond Consumption on Selected Markers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis

This systematic review and meta-analysis aimed to evaluate the effectiveness of almond consumption on serum C-reactive protein (CRP) and malondialdehyde (MDA) levels in individuals at risk of cardiovascular disease (CVD). An electronic database search was performed on PubMed, Web of Science, Scopus, and the Cochrane Library from inception through October 2024. Summary effect size measurements were calculated using random effects model estimation and were reported as weighted mean differences (WMDs) along with 95% confidence intervals (CIs). A total of 258 articles were identified, and 13 randomized controlled trials (RCTs) were included in the systematic review and meta-analysis. The meta-analysis of eleven RCTs, which involved a total of 544 participants, indicated that almonds significantly reduced levels of CRP (WMD, -0.28 mg/L; 95% CI, -0.52, -0.04; p = 0.02). However, we found no significant benefit of almond consumption in improving serum MDA levels, and due to the limited number of studies, the examination of MDA was conducted only qualitatively. This study supports the conclusion that almond consumption has favorable effects on CRP levels in individuals with CVD risk factors. More high-quality trials are needed to confirm these findings.

https://doi.org/10.7762/cnr.2025.14.1.78


Perspective: Current Scientific Evidence and Research Strategies in the Role of Almonds in Cardiometabolic Health

Almonds are consumed by individuals around the world. Because almonds are rich in protein, unsaturated fatty acids, and fiber, a significant amount of research has been conducted on their role in affecting various cardiometabolic endpoints (body weight, blood pressure, blood cholesterol levels, and glycemic response). The most current meta-analyses on almond consumption and various health-related endpoints suggest that almond consumption does not result in weight gain and results in small reductions in LDL cholesterol and diastolic blood pressure, as well as improved glycemic responses in certain populations (i.e. Asian Indians). A number of research gaps on almond consumption and cardiometabolic health were identified that should be addressed to further understand their role in the various cardiometabolic endpoints, including the mechanisms of action interactions with the microbiome with regular consumption and their role as part of a healthy dietary pattern for both individuals and the general population.

https://doi.org/10.1016/j.cdnut.2024.104516


Consuming Pecans as a Snack Improves Lipids/Lipoproteins and Diet Quality Compared to Usual Diet in Adults at Increased Risk for Cardiometabolic Diseases: A Randomized Controlled Trial

Background: The vascular and cardiometabolic effects of pecans are relatively under-studied. Objectives: The aim was to examine how substitution of usual snack foods with 57 g/day of pecans affects vascular health, risk factors for cardiometabolic diseases and diet quality, compared to continuing usual intake in individuals at risk for cardiometabolic diseases. Methods: A 12-week single-blinded, parallel, randomized controlled trial was conducted. Adults with ≥1 criterion for metabolic syndrome who were free from cardiovascular disease and type 2 diabetes were included. Participants were provided with 57 g/day of pecans and instructed to replace the snacks usually consumed with the provided pecans. The control group was instructed to continue consuming their usual diet. Flow mediated dilation (FMD; primary outcome), blood pressure, carotid-femoral pulse wave velocity (cf-PWV), lipids/lipoproteins, and glycemic control were measured at baseline and following the intervention. Participants completed three 24-hour recalls at three timepoints (baseline, week 6, and week 12) during the study (9 recalls in total). The Healthy Eating Index-2020 (HEI-2020) was calculated to assess diet quality. Results: In total, 138 participants (Mean±SD;46±13 years, 29.8±3.7 kg/m2) were randomized (69 per group). No between group differences in FMD, cf-PWV or blood pressure were observed. Compared to the usual diet group, pecan intake reduced total cholesterol (-8.1 mg/dL; 95%CI -14.5, -1.7), LDL-C (-7.2 mg/dL; 95%CI -12.3, -2.1), non-HDL-C (-9.5 mg/dL; 95%CI -15.3, -3.7) and triglycerides (-16.4 mg/dL; 95%CI -30.0, -2.9). Weight tended to increase in the pecan group compared with the usual diet group (0.7 kg; 95%CI -0.1, 1.4). The HEI-2020 increased by 9.4 points (95%CI 5.0, 13.7) in the pecan group compared to the usual diet group. Conclusions: Replacing usual snacks with 57 g/day of pecans for 12-weeks improved lipids/lipoproteins and diet quality, but did not affect vascular health in adults at risk for cardiometabolic disease.

https://doi.org/10.1016/j.ajcnut.2025.01.024


Effects of Longer-Term Mixed Nut Consumption on Lipoprotein Particle Concentrations in Older Adults with Overweight or Obesity

Background: Recently, we reported that longer-term mixed nut intake significantly reduced serum total and low-density lipoprotein (LDL)-cholesterol, but these markers may not fully capture lipoprotein-related cardiovascular disease (CVD) risk. Objectives: This randomized, controlled, single-blinded, crossover trial in older adults with overweight or obesity examined the effects of longer-term mixed nut consumption on lipoprotein particle size, number, and lipid distribution. Methods: Twenty-eight participants (aged 65 ± 3 years; BMI 27.9 ± 2.3 kg/m2) completed two 16-week periods (control [no nuts] vs. mixed nuts (60 g/day: 15 g of walnuts, pistachios, cashews, and hazelnuts), separated by an 8-week washout. Plasma lipoprotein particle numbers, sizes, and lipid distributions across subclasses were analyzed using high-throughput nuclear magnetic resonance (NMR) spectroscopy. Results: Mixed nut consumption significantly reduced Apolipoprotein B (ApoB) concentrations (−0.07 g/L; p = 0.009), total cholesterol (−0.27 mmol/L; p = 0.047), non-HDL cholesterol (−0.28 mmol/L; p = 0.022), and total triacylglycerol (TAG) (−0.27 mmol/L; p = 0.008). Total very large-density lipoprotein (VLDL) particle numbers decreased by 24 nmol/L (p < 0.001), with reductions observed across all VLDL subclasses. Total LDL particle numbers (p = 0.044), specifically intermediate-density lipoprotein (IDL) (p = 0.002) and large LDL particles (p = 0.015), were also reduced, while HDL particle numbers and sizes were unaffected. The mixed nut intervention significantly reduced cholesterol concentrations across all VLDL subclasses and IDL (all p < 0.01), with no changes in LDL or HDL subclasses. TAG concentrations showed reductions across all lipoprotein subclasses (all p < 0.05). Conclusions: Longer-term mixed nut consumption may lower CVD risk in older adults and favorable shifts in apoB-containing lipoprotein subclasses towards a less atherogenic profile.

https://doi.org/10.3390/nu17010008


Effect of Premeal Pistachio Supplementation on Cardiometabolic Risk Factors among Asian Indian Adults with Prediabetes: A Randomized Controlled Trial

Background: Asian Indians are susceptible to developing type 2 diabetes at a lower age and often consume diets that are high in glycemic load and low in healthy fats. Objectives: This study aimed to evaluate the effect of 30 g prebreakfast and 30 g predinner supplementation of pistachios for 12 wk on glycated hemoglobin (HbA1c), other glycemic markers, anthropometry, and lipid profile of Asian Indians with prediabetes. Methods: In a 12-wk parallel arm, randomized controlled trial, we recruited 120 participants with prediabetes based on American Diabetes Association criteria. The intervention group (n = 60) consumed 60 g pistachios (30 g prebreakfast and predinner) whereas the control group (n = 60) followed a routine diet that excluded nuts. At baseline and 12 wk, we collected blood samples for biochemical analysis, anthropometrics, and 24-h recalls. Participants wore a continuous glucose monitoring (CGM) sensor during the trial's first and last 2 wk. Urinary N-methyl-trans-4-hydroxy-l-proline (MHP) was measured as a marker of pistachio consumption. Results: A total of 109 participants completed the study (follow-up rate = 90.8%). Compared with participants in the control group, those in the intervention group had significant reductions in HbA1c (mean between-group difference: -0.2; 95% confidence interval: -0.3, -0.1; P < 0.001] with no significant changes in fasting or 2-h post glucose load plasma glucose. Compared with the control group, the intervention group had significant reductions in serum triglyceride, waist circumference, lipid accumulation product, visceral adiposity index, and atherogenic index. Urinary MHP (mg/g creatinine) showed a 62% increase in the intervention compared with the control group (P < 0.05). CGM data revealed significant decreases in the incremental area under the curve, 2-h after breakfast (28%, p=0.01) and after dinner (17%, P = 0.002) in the intervention group compared to the control group. Conclusions: A 12-wk, premeal load of 60 g pistachios lowers HbA1c and improves cardiometabolic profile among Asian Indians with prediabetes. This is among the first studies to investigate these effects in this ethnic group. This study was registered in the Clinical Trial Registry of India as CTRI/2020/11/029340.

https://jn.nutrition.org/article/S0022-3166(24)01231-8/abstract


Effect of Nut Consumption on Blood Lipids: An updated Systematic Review and Meta-analysis of Randomized Controlled Trials

Aims: Nuts are nutrient-dense foods touted for their health-promoting effects, especially regarding cardiovascular health, yet inconsistencies in the literature remain in relation to their effect on blood lipids. Hence, a systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to determine the effect of nut intake on blood lipids. Data Synthesis: MEDLINE-PubMed and Cochrane databases were searched. 113 unique trials met eligibility criteria (n=8060 adults with various health status) assessing the effect of a median daily dose of 45.5 g/d of nuts compared to a non-nut control on blood lipid outcomes met inclusion criteria. Overall, nut consumption resulted in moderate reductions in total cholesterol (mean difference, -0.14 mmol/L [95% confidence interval, -0.18 to -0.10 mmol/L]) and LDL-C (-0.12 mmol/L [-0.14 to -0.09 mmol/L]), with small reductions in triglycerides (-0.05 mmol/L [-0.07 to -0.03 mmol/L]), TC:HDL-C (-0.11 [-0.16 to -0.06]), LDL-C:HDL-C (-0.19 [-0.24 to -0.12]), and apolipoprotein B (-0.04 g/L [-0.06 to -0.02 g/L]). There was no significant impact on HDL-cholesterol or other assessed measures. Certainty of evidence was high for apolipoprotein A, and generally moderate/low for all other outcomes. Sensitivity analysis did not change the evidence on the main outcomes. Significant effect modifications in subgroup analysis were shown for most of the lipid parameters assessed. None of these subgroup effects altered the evidence of heterogeneity for any primary outcome. Conclusions: Current evidence provides a good indication that consuming nuts may advantageously affect blood lipids in adults with a mix of health status.
http://bit.ly/3AuLQlW


Cashew nut (Anacardium occidentale L.) and cashew nut oil reduce cardiovascular risk factors in adults on weight-loss treatment: a randomized controlled three-arm trial (Brazilian Nuts Study)

Introduction: Cashew nut contains bioactive compounds that modulate satiety and food intake, but its effects on body fat during energy restriction remains unknown. This study aimed to assess the effects of cashew nut and cashew nut oil on body fat (primary outcome) as well as adiposity, cardiometabolic and liver function markers (secondary outcomes). Materials and methods: An eight-week (8-wk) randomized controlled-feeding study involved 68 adults with overweight/obesity (40 women, BMI: 33 ± 4 kg/m2). Participants were randomly assigned to one of the energy-restricted (−500 kcal/d) groups: control (CT, free-nuts), cashew nut (CN, 30 g/d), or cashew nut oil (OL, 30 mL/d). Body weight, body composition, and blood collection were assessed at the baseline and endpoint of the study. Results: After 8-wk, all groups reduced significantly body fat (CT: −3.1 ± 2.8 kg; CN: −3.3 ± 2.7 kg; OL: −1.8 ± 2.6 kg), body weight (CT: −4.2 ± 3.8 kg; CN: −3.9 ± 3.1 kg; OL: −3.4 ± 2.4 kg), waist (CT: −5.1 ± 4.6 cm; CN: −3.9 ± 3.9 cm; OL: −3.7 ± 5.3 cm) and hip circumferences (CT: −2.9 ± 3.0 cm; CN: −2.7 ± 3.1 cm; OL: −2.9 ± 2.3 cm). CN-group reduced liver enzymes (AST: −3.1 ± 5.3 U/L; ALT: −6.0 ± 9.9 U/L), while the OL-group reduced LDL-c (−11.5 ± 21.8 mg/dL) and atherogenic index (−0.2 ± 0.5). Both intervention groups decreased neck circumference (CN: −1.0 ± 1.2 cm; OL: −0.5 ± 1.2 cm) and apo B (CN: −6.6 ± 10.7 mg/dL; OL: −7.0 ± 15.3 mg/dL). Conclusion: After an 8-wk energy-restricted intervention, all groups reduced body fat (kg), weight, and some others adiposity indicators, with no different effect of cashew nut or cashew nut oil. However, participants in the intervention groups experienced additional reductions in atherogenic marker, liver function biomarkers, and cardiovascular risk factors (neck circumference and apo B levels), with these effects observed across the OL group, CN group, and both intervention groups, respectively. https://doi.org/10.3389/fnut.2024.1407028


The Effects of Almond Consumption on Cardiovascular Health and Gut Microbiome: A Comprehensive Review

The consumption of almonds has been associated with several health benefits, particularly concerning cardiovascular and intestinal health. In this comprehensive review, we compile and deliberate studies investigating the effects of almond consumption on cardiovascular disease (CVD) risk factors and gut health. Almonds are rich in monounsaturated fats, fiber, vitamins, minerals, and polyphenols, which contribute to their health-promoting properties. Regular intake of almonds has been shown to improve lipid profiles by reducing LDL cholesterol and enhancing HDL functionality. Additionally, almonds aid in glycemic control, blood pressure reduction, and chronic inflammation amelioration, which are critical for cardiovascular health. The antioxidant properties of almonds, primarily due to their high vitamin E content, help in reducing oxidative stress markers. Furthermore, almonds positively influence body composition by reducing body fat percentage and central adiposity and enhancing satiety, thus aiding in weight management. Herein, we also contemplate the emerging concept of the gut–heart axis, where almond consumption appears to modulate the gut microbiome, promoting the growth of beneficial bacteria and increasing short-chain fatty acid production, particularly butyrate. These effects collectively contribute to the anti-inflammatory and cardioprotective benefits of almonds. By encompassing these diverse aspects, we eventually provide a systematic and updated perspective on the multifaceted benefits of almond consumption for cardiovascular health and gut microbiome, corroborating their broader consideration in dietary guidelines and public health recommendations for CVD risk reduction. https://doi.org/10.3390/nu16121964


Muesli Intake May Protect Against Coronary Artery Disease: Mendelian Randomization on 13 Dietary Traits

Background: Diet is a key modifiable risk factor of coronary artery disease (CAD). However, the causal effects of specific dietary traits on CAD risk remain unclear. With the expansion of dietary data in population biobanks, Mendelian randomization (MR) could help enable the efficient estimation of causality in diet-disease associations. Objectives: The primary goal was to test causality for 13 common dietary traits on CAD risk using a systematic 2-sample MR framework. A secondary goal was to identify plasma metabolites mediating diet-CAD associations suspected to be causal. Methods: Cross-sectional genetic and dietary data on up to 420,531 UK Biobank and 184,305 CARDIoGRAMplusC4D individuals of European ancestry were used in 2-sample MR. The primary analysis used fixed effect inverse-variance weighted regression, while sensitivity analyses used weighted median estimation, MR-Egger regression, and MR-Pleiotropy Residual Sum and Outlier. Results: Genetic variants serving as proxies for muesli intake were negatively associated with CAD risk (OR: 0.74; 95% CI: 0.65-0.84; P = 5.385 × 10-4). Sensitivity analyses using weighted median estimation supported this with a significant association in the same direction. Additionally, we identified higher plasma acetate levels as a potential mediator (OR: 0.03; 95% CI: 0.01-0.12; P = 1.15 × 10-4). Conclusions: Muesli, a mixture of oats, seeds, nuts, dried fruit, and milk, may causally reduce CAD risk. Circulating levels of acetate, a gut microbiota-derived short-chain fatty acid, could be mediating its cardioprotective effects. These findings highlight the role of gut flora in cardiovascular health and help prioritize randomized trials on dietary interventions for CAD.

https://doi.org/10.1016/j.jacadv.2024.100888


Effects of Prune (Dried Plum) Supplementation on Cardiometabolic Health in Postmenopausal Women: An Ancillary Analysis of a 12-Month Randomized Controlled Trial, The Prune Study

Background: Estrogen withdrawal during menopause is associated with an unfavorable cardiometabolic profile. Prunes (dried plums) represent an emerging functional food and have been previously demonstrated to improve bone health. However, our understanding of the effects of daily prune intake on cardiometabolic risk factors in postmenopausal women is limited. Objectives: We conducted an ancillary investigation of a randomized controlled trial (RCT), The Prune Study, to evaluate the effect of 12-mo prune supplementation on cardiometabolic health markers in postmenopausal women. Methods: The Prune Study was a single-center, parallel-design, 12-mo RCT in which postmenopausal women were allocated to no-prune control, 50 g/d prune, or 100 g/d prune groups. Blood was collected at baseline, 6 mo, and 12 mo/post to measure markers of glycemic control and blood lipids. Body composition was assessed at baseline, 6 mo, and 12 mo/post using dual-energy X-ray absorptiometry. Linear mixed-effects models were used to evaluate the effect of time, treatment, and their interaction on cardiometabolic health markers, all quantified as exploratory outcomes. Results: A total of 183 postmenopausal women (mean age, 62.1 ± 4.9 y) completed the entire 12-mo RCT: control (n = 70), 50 g/d prune (n = 67), and 100 g/d prune (n = 46). Prune supplementation at 50 g/d or 100 g/d did not alter markers of glycemic control and blood lipids after 12 mo compared with the control group (all P > 0.05). Furthermore, gynoid percent fat and visceral adipose tissue (VAT) indices did not significantly differ in women consuming 50 g/d or 100 g/d prunes compared with the control group after 12 mo of intervention. However, android total mass increased by 3.19% ± 5.5% from baseline in the control group, whereas the 100 g/d prune group experienced 0.02% ± 5.6% decrease in android total mass from baseline (P < 0.01). Conclusions: Prune supplementation at 50 g/d or 100 g/d for 12 mo does not improve glycemic control and may prevent adverse changes in central adiposity in postmenopausal women. This trial was registered at clinicaltrials.gov as NCT02822378.

https://doi.org/10.1016/j.tjnut.2024.03.012