Formulation of a probiotic product using Almond gum

Background: The application of probiotics in food has expanded significantly, yet its viability remains a challenge. In response to this issue, this study explores a unique approach. Almond gum, a natural extract from Prunus dulcis, is utilized as the primary carrier matrix for a novel probiotic product featuring Saccharomyces boulardii, a probiotic yeast. Methods: This study involves the entrapment of S. boulardii in almond gum through centrifugation (5 min at 1300 × g) and subsequent 24 h drying at 50 °C. Sensory evaluation and other investigations were conducted at different pH levels to assess viability and performance. Results: Post-drying entrapment efficiency was 83.85%, underscoring the benefits of choosing almond gum as a carrier matrix. Promising results were observed from viability testing conducted in gastric juice (pH 1.2) and in simulated intestinal fluid (pH 6.8). Matrix stability was assessed by measuring cfu ml-1 following 7 days' storage at different temperatures, complemented by sensory analysis. Conclusion: Almond gum is a promising carrier matrix for probiotic products. Its high entrapment efficiency and its viability under challenging pH conditions demonstrate its efficacy. It is rich in carbohydrates and serves a dual purpose by acting as a prebiotic source, as confirmed through ultraviolet-visible (UV-visible) analysis. The study underscores the potential of this novel approach, providing insights into responses to viability challenges in probiotic food products. © 2024 Society of Chemical Industry.

https://doi.org/10.1002/jsfa.13301


Mitigating the allergenicity of peanut allergen Ara h 1 by cold atmospheric pressure argon plasma jet.

Background: Peanut allergy is recognized as a major food allergy that triggers severe and even fatal symptoms. Avoidance of peanuts in the diet is the main option for current safety management. Processing techniques reducing peanut allergenicity are required to develop other options. Cold plasma is currently considered as a novel non-thermal approach to alter protein structure and has the potential to alleviate immunoreactivity of protein allergen. Results: The application of a cold argon plasma jet to peanut protein extract could reduce the amount of a 64 kDa protein band corresponding to a major peanut allergen Ara h 1 using sodium dodecyl sulfate–polyacrylamide gel electrophoresis, but the overall protein size distribution did not change significantly. A decrease in peanut protein solubility was a possible cause that led to the loss of protein content in the soluble fraction. Immunoblotting and enzyme-linked immunosorbent assay elucidated that the immunoreactivity of Ara h 1 was significantly decreased with the time treated with plasma. Ara h 1 antigenicity reduced by 38% after five scans (approximately 3 min) of cold argon plasma jet treatment, and the reduction was up to 66% after approximately 15 min of treatment. Conclusion: The results indicate that cold argon plasma jet treatment could be a suitable platform for alleviating the immunoreactivity of peanut protein. This work demonstrates an efficient, compact, and rapid platform for mitigating the allergenicity of peanuts, and shows great potential for the plasma platform as a non-thermal technique in the food industry. © 2023 Society of Chemical Industry. https://doi.org/10.1002/jsfa.12454


Acceleration of lipid oxidation in raw stored almond kernels in response to postharvest moisture exposure.

Background: Almonds are an important crop in California, and increased yields necessitate that dried in-hull almonds are stored in the field for longer periods increasing the potential for postharvest moisture exposure (e.g. rain, fog, etc.). Processors are increasingly drying these 'wet' almonds to a moisture content of <6% using low heat before the hulling and shelling process in order to reduce mechanical damage to the nutmeat. To date, there is no information on the impact that moisture exposure and drying prior to hulling and shelling, has on lipid oxidation and storage shelf life of raw almonds. Results: Raw almonds exposed to ≤8% moisture and subsequently dried (MEx) and almonds not exposed to moisture exposure (≤ 4% moisture; control) were stored under accelerated shelf-life conditions and evaluated monthly over 12 months for free fatty acids value (FFA), peroxide value (PV), and headspace volatiles. At 12 months of accelerated storage, MEx almonds have 1.4 times higher FFA and 3.5 times higher PV than the control indicating significant oxidative damage. MEx almonds also demonstrated higher levels of headspace volatile compounds related to lipid oxidation (i.e. hexanal, octanal, hexanoic acid) throughout storage. Conclusion: Drying almonds exposed to postharvest moisture prior to storage results in a higher degree of lipid oxidation during storage and a significant reduction in shelf life. https://doi.org/10.1002/jsfa.11452