Cashew Nutshells: A Promising Filler for 3D Printing Filaments

Cashew nutshells from the northern region of Colombia were prepared to assess their potential use as a filler in polymer matrix filaments for 3D printing. After drying and grinding processes, cashew nutshells were characterized using scanning electron microscopy (SEM), attenuated total reflectance Fourier-transform infrared (ATR-FTIR), and thermogravimetric analyses (TGA). Three different filaments were fabricated from polylactic acid pellets and cashew nutshell particles at 0.5, 1.0, and 2.0 weight percentages using a single-screw extruder. Subsequently, single-filament tensile tests were carried out on them. SEM images showed rough and porous particles composed of an arrangement of cellulose microfibrils embedded in a hemicellulose and lignin matrix, the typical microstructure reported for natural fibers. These characteristics observed in the particles are favorable for improving filler-matrix adhesion in polymer matrix composites. In addition, their low density of 0.337 g/cm3 makes them attractive for lightweight applications. ATR-FTIR spectra exhibited specific functional groups attributed to hemicellulose, cellulose, and lignin, as well as a possible transformation to crystalline cellulose during drying treatment. According to TGA analyses, the thermal stability of cashew nutshell particles is around 320 °C. The three polylactic acid-cashew nutshell particle filaments prepared in this work showed higher tensile strength and elongation at break when compared to polylactic acid filament. The characteristics displayed by these cashew nutshell particles make them a promising filler for 3D printing filaments. https://doi.org/10.3390/polym15224347


Characterization of Artificial Stone Produced with Blast Furnace Dust Waste Incorporated into a Mixture of Epoxy Resin and Cashew Nut Shell Oil

The demand for materials with improved properties and less negative impact on the environment is growing. Artificial stones are examples of these materials produced with up to 90% of particulate material joined by a binder. This article evaluates the physical and mechanical properties of two artificial stones produced with processing steel residue (blast furnace dust waste) and quartz powder. Two binders were used: pure epoxy resin, denoted as ASPB100, or a mixture of 70 wt% epoxy resin with 30 wt% cashew nut shell oil, denoted as ASPB7030. The process took place under vibration, compression (3 MPa/20 min and 90 °C) and vacuum (80 Pa). ASPB100 showed water absorption of 0.07%, while for ASPB7030, it was 0.54%. They were classified as having high mechanical strength associated with bending stress values equal to 32 and 25 MPa, respectively. Stain resistance indicated that both artificial stones had their stains removed with the tested cleaning agents. In this way, the novel artificial stones produced are sustainable alternatives for the application of blast furnace waste and cashew nut shell oil, reducing their negative impacts on the environment. https://doi.org/10.3390/polym15204181


Valorization of walnut green husk (Juglans regia L.) through sequential electrohydrodynamic extraction of pectin and phenolics: Process optimization and multidimensional analysis

This study aimed to optimize the extraction of pectin and phenolics from walnut green husk using the electrohydrodynamic method (EHD) and assess its impact on the chemical structure and properties of pectin. A comparative analysis was conducted with acidified water as the conventional extraction method. The results revealed significant improvements under the optimal EHD conditions (36.8 min, 17.5 kV, 90 °C), leading to a remarkable increase of over 64 % in pectin yield and >20 % in total phenolic content in half the extraction time. Chemical analysis showed that pectin samples contain 1.4-1.7 % ash, 3.6-4.6 % protein, over 90 % carbohydrates, and a galacturonic acid content ranging from 67.7 to 68.2 g/g. Both extraction methods yielded pectin with a high methoxyl degree, comparable thermal stability, and amorphous structure. EHD treatment resulted in reduced molecular weight, degree of esterification, water-holding capacity, and emulsion stability of pectin while enhancing its solubility and emulsion capacity. In summary, EHD treatment significantly improved extraction yield and changed the functionality of pectin, particularly in terms of emulsion activity. This alteration should be considered when utilizing pectin for specific applications. https://doi.org/10.1016/j.ijbiomac.2023.127545


Effects of walnut seed coat polyphenols on walnut protein hydrolysates: Structural alterations, hydrolysis efficiency, and acetylcholinesterase inhibitory capacity

The walnut meal is rich in nutrients such as protein from the kernel and polyphenolic compounds from the seed coat. However, the influences of seed coat polyphenols on walnut protein (WP) hydrolysis remained unclear. In this study, our findings indicated that polyphenols induced alterations in the secondary structure and amino acid composition of WP. These changes resulted in both a hindrance of hydrolysis and an enhancement of acetylcholinesterase (AChE) inhibition. Furthermore, four peptides of 119 identified peptides (LR, SF, FQ, and FR) were synthesized based on higher predicted bioactivity and Vinascores in silico. Among them, FQ showed interaction with amino acid residues in AChE through the formation of four π-π stacking bonds and two hydrogen bonds, resulting in the highest AChE inhibitory capacity. The combination index showed that chlorogenic acid derived from the seed coat and FQ at the molar ratio of 1:4 exhibited synergistic effects of AChE inhibition. https://doi.org/10.1016/j.foodchem.2023.137905


Impact of Modified Atmosphere Packaging Conditions on Quality of Dates: Experimental Study and Predictive Analysis Using Artificial Neural Networks

Dates are highly perishable fruits, and maintaining their quality during storage is crucial. The current study aims to investigate the impact of storage conditions on the quality of dates (Khalas and Sukary cultivars) at the Tamer stage and predict their quality attributes during storage using artificial neural networks (ANN). The studied storage conditions were the modified atmosphere packing (MAP) gases (CO2, O2, and N), packaging materials, storage temperature, and storage time, and the evaluated quality attributes were moisture content, firmness, color parameters (L*, a*, b*, and ∆E), pH, water activity, total soluble solids, and microbial contamination. The findings demonstrated that the storage conditions significantly impacted (p < 0.05) the quality of the two stored date cultivars. The use of MAP with 20% CO2 + 80% N had a high potential to decrease the rate of color transformation and microbial growth of dates stored at 4 °C for both stored date cultivars. The developed ANN models efficiently predicted the quality changes of stored dates closely aligned with observed values under the different storage conditions, as evidenced by low Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) values. In addition, the reliability of the developed ANN models was further affirmed by the linear regression between predicted and measured values, which closely follow the 1:1 line, with R2 values ranging from 0.766 to 0.980, the ANN models demonstrate accurate estimating of fruit quality attributes. The study's findings contribute to food quality and supply chain management through the identification of optimal storage conditions and predicting the fruit quality during storage under different atmosphere conditions, thereby minimizing food waste and enhancing food safety.
https://doi.org/10.3390/foods12203811


Thermally treated peanut oil bodies as a fat replacer for ice cream: Physicochemical and rheological properties

This study investigates the potential use of peanut oil bodies as a fat replacer in ice cream. We explored the effects of different treatments, fresh (FOB), heated (HOB), and roasted (ROB) peanut oil bodies on ice cream preparation. Heat treatment altered the intrinsic protein profile on the oil bodies' surface, subsequently influencing the ice cream's properties. Notably, heat treatment increases the oil bodies' size and the absolute value of ζ-potential. The rheological analysis provided information about void volumes, indicating easier air incorporation during whipping for ROB (72 to 300 nm) than FOB (107 to 55 nm). ROB ice cream displays a high overrun and a lower melting rate compared to FOB ice cream. Moreover, thermal treatment reduces the beany flavors, n-hexanal, and 2-pentenylfuran. Overall, this study reveals peanut oil bodies as a promising platform for rational design of fat-substituted plant-based ice creams.
https://doi.org/10.1016/j.foodchem.2023.137630


A Review on Extracts, Chemical Composition and Product Development of Walnut Diaphragma Juglandis Fructus.

Walnuts are one of the world's most important nut species and are popular for their high nutritional value, but the processing of walnuts produces numerous by-products. Among them, Diaphragma Juglandis Fructus has attracted the attention of researchers due to its complex chemical composition and diverse bioactivities. However, comprehensive reviews of extract activity and mechanistic studies, chemical composition functionality, and product types are scarce. Therefore, the aim of this review is to analyze the extracts, chemical composition, and product development of Diaphragma Juglandis Fructus. Conclusions: For extracts, the biological activities of aqueous and ethanol extracts have been studied more extensively than those of methanol extracts, but almost all of the studies have been based on crude extracts, with fewer explorations of their mechanisms. For chemical composition, the bioactivities of polyphenols and polysaccharides were more intensively studied, while other chemical constituents were at the stage of content determination. For product development, walnuts are mainly used in food and medicine, but the product range is limited. In the future, research on the bioactivity and related mechanisms of Diaphragma Juglandis Fructus can be further expanded to improve its value as a potential natural plant resource applied in multiple industries.

https://doi.org/10.3390/foods12183379


The Antioxidant Activities In Vitro and In Vivo and Extraction Conditions Optimization of Defatted Walnut Kernel Extract.

The objective of this study was to determine the antioxidant activities of defatted walnut kernel extract (DWE) and whole walnut kernel extract (WE) in vitro and in vivo. Three spectrophotometric methods, DPPH, ABTS, and FRAP, were used in in vitro experiments, and mice were used in in vivo experiments. In addition, response surface methodology (RSM) was used to optimize reflux-assisted ethanol extraction of DWE for maximum antioxidant activity and total phenolic content. The results of in vitro experiments showed that both extracts showed antioxidant activity; however, the antioxidant activity of DWE was higher than that of WE. Both extracts improved the mice's oxidative damage status in in vivo studies. An ethanol concentration of 58%, an extraction temperature of 48 °C, and an extraction time of 77 min were the ideal parameters for reflux-assisted ethanol extraction of DWE. The results may provide useful information for further applications of defatted walnut kernels and the development of functional foods.

https://doi.org/10.3390/foods12183417


Macadamia oil-based oleogels as cocoa butter alternatives: Physical properties, oxidative stability, lipolysis, and application.

In this study, macadamia oil-based oleogels were prepared using monoglyceride stearate (MG) as a gelator with a low critical gelation concentration (3.0 wt%). The physical properties of the oleogels were evaluated by polarized light microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, texture and rheological analysis. And the lipid digestion and oxidative stability of the macadamia oil were determined by pH titration and accelerated oxidation test, respectively. The results showed that the hardness, oil binding capacity, and thermal stability of the oleogels increased with increasing MG concentration, which was attributed to the formation of a network of MG crystals held together by van der Waals interactions and hydrogen bonds. Rheological analysis indicated that all the oleogels exhibited a thermally reversible solid-to-liquid transition and viscoelastic behavior at ambient temperatures. Moreover, the formation of oleogels increased fatty acid release during in vitro lipid digestion and improved the oxidative stability of the macadamia oil. In addition, the potential application of these oleogels as replacements for saturated fats in foods was demonstrated by creating a chocolate product where the cocoa butter was replaced with macadamia oil-based oleogels with a high degree of unsaturation. These results can provide guidance for the preparation of macadamia oil-based oleogels, which may increase their application in foods. https://doi.org/10.1016/j.foodres.2023.113098


The relative dominance of surface oxygen content over pore properties in controlling adsorption and retrograde behavior of gaseous toluene over microporous carbon.

The performance of activated carbon (AC) derived from macadamia nut shells (product code of Procarb-900: namely, AC-P) has been investigated using gaseous toluene as the target pollutant. The powder AC-P with high-microporosity (96 %) and oxygen content (5.62 %) exhibited very high adsorption capacity (214 mg·g-1) and partition coefficient (PC: 25 mol·kg-1·Pa-1) against 100 ppm (10 Pa) toluene at 99 % breakthrough levels (1 atm dry N2). The factors governing toluene adsorption were explored with respect to the key variables such as surface functional groups, pore size distribution, sorbent bed mass (50, 100, and 150 mg), and particle size (i.e., 0.212-0.6 mm (powder AC: PAC)) vs. 0.6-2.36 mm (granular AC: GAC)). Accordingly, the adsorption process was physical, mainly due to the non-polar interactions (i.e., π-π interactions) between the adsorbent and adsorbate molecules. The high affinity of AC-P at low breakthrough levels was obtained through a combination of smaller particle size (PAC) and larger adsorbent mass (i.e., 150 mg) with the appearance of a very pronounced retrograde phenomenon (e.g., at <1 % breakthrough level). As such, toluene adsorption appeared to be affected more sensitively by particle size and adsorbent mass (especially at low breakthrough levels) than by high microporosity. Most importantly, the oxygen content of AC emerges as one of the key factors governing the maximum capacity, as the changes in pore volume are not crucial to explain the observed adsorption patterns of toluene.

https://doi.org/10.1016/j.scitotenv.2023.167308