Cascading use of macadamia nutshell for production of energy and adsorbents through biomass gasification

This research delves into the viability of implementing macadamia nutshell in a cascading utilization strategy through gasification. The investigation entails a comprehensive scrutiny of the physiochemical attributes of the feedstock, coupled with an in-depth exploration of the transformations in the properties of both gaseous and solid products stemming from gasification under conditions pertinent to industry applications. Remarkably, macadamia nutshell gasification consistently produced syngas with high CO and H2 levels, resulting in an average Lower Heating Value of 13.8 MJ m-3. The characterization of the obtained chars unveiled a porous structure replete with micro-mesopores, attributing to a carbon dioxide adsorption capacity of 223 mg g-1. Surface analysis discerned a diverse array of functional groups and a marked presence of potassium and calcium (up to 31.37 wt% and 4.12 wt%, respectively). These findings bolster the potential of macadamia nutshell for cascading gasification, offering both energy generation and the production of solid adsorbents. The amassed dataset contributes to the realization of waste-free energy production through biomass gasification, thus propelling the progress of sustainable energy technologies.
https://doi.org/10.1016/j.indcrop.2023.117662


How to find alternative crops for climate-resilient regional food production

CONTEXT. Agricultural food production is both affected by and contributing to climate change. At the global scale, agri-food systems are responsible for one-third of total greenhouse gas emissions. With progressing climate change, the risks of crop failure increase. Thus, an urgent need is to reduce emissions from food systems while increasing their resilience to climate change. Enormous untapped potentials to achieve these dual goals lie in transforming agri-food systems towards more diverse, plant-based, and regional food production systems. OBJECTIVE. In this paper, we present an innovative approach for identifying climate-adapted alternative food crops that could (1) help to diversify existing cropping systems and thus increase their climate resilience and can be (2) nutritious elements of plant-based regional diets with reduced emissions. METHODS. The approach builds on the model ecocrop to select food crops that could benefit from regionally projected changes in climate. The model-based analysis is complemented with a literature review to examine the ecocrop results for their plausibility and provide a broader assessment of potentials for cultivation, utilization, and nutritional values of model-selected crops. RESULTS AND CONCLUSIONS. The approach is applied to Switzerland, where we identify eight alternative crops with the potential to increase climate resilience while contributing to healthy human diets of regional consumers with benefits for climate mitigation (almond, pecan, sesame, durum wheat, quinoa, lentil, lupine, and borage). The literature review indicated that the increasing demand for many of these crops suggests great potential for regional marketing of crop products. The results produced in this study provide an initial guide for researchers and innovative farmers interested in experimenting with alternative crops in Switzerland, thus promoting climate-smart food system transformation from the production side. SIGNIFICANCE. Using our unbiased bottom-up screening approach, we identified climate-adapted alternative crops that can provide essential nutrients, cover nutritional gaps in Switzerland, diversify existing production systems, and improve sustainability.
https://doi.org/10.1016/j.agsy.2023.103793


Construction of eco-friendly multifunctional cashew nut shell oil-based waterborne polyurethane network with UV resistance, corrosion resistance, mechanical strength, and transparency

Vegetable oil-based waterborne polyurethane possesses numerous advantages, including its sustainability, environmental friendliness, and economic benefits. Nevertheless, its application is constrained by inferior mechanical properties and a low glass transition temperature. Hereon, the renewable polyols of sorbitan monooleate/cytidine were incorporated into the anionic cashew nut shell oil-based WPU network through molecular structure design. Series of CNSL-based WPU with outstanding UV resistance, mechanical properties, corrosion resistance, and transparency were successfully synthesized. The effects of Ce/SP content on the performance of CNSL-based WPU dispersions and films were investigated. The results demonstrated a remarkable enhancement in the properties of the modified WPU films. Specifically, the tensile strength and Tg were increased from 9.7 MPa to 23.9 MPa and 1.1 °C to 45.8 °C, respectively, while maintaining a toughness of 26 MJ/m−3, which attained or even surpassed the current vegetable oil-based WPU systems. It was confirmed excellent UV resistance within the UVB and UVC spectrums. Furthermore, with the increase in Ce/SP content, the water contact angle of films increased slightly, enhancing its water resistance. The IE of WPU-Ce and WPU-SP films reached 97.93 % and 98.42 % respectively, indicating outstanding corrosion resistance. This work presented novel strategies for the advancement of high-performance bio-based WPU, which held promising potential in diverse areas including coatings, corrosion protection, inks, and wearable applications.
https://doi.org/10.1016/j.porgcoat.2023.108051


Recycling of Hazelnut Husk; from Bio-waste to Phyto-Assisted Synthesis of Silver Nanoparticles

In the present work, green synthesis is utilized in the synthesis of silver nanoparticles with hazelnut (Corylus Colurna) husk which is the outer leaf part of the hazelnut shell and is considered bio-waste. According to transmission electron microscopy and x-ray diffraction analysis, the morphology of the silver nanoparticles synthesized by 0.1 g/mL hazelnut husk extract is found to be spherical with an average diameter of 6.57 nm and possesses ultra-narrow size distribution. UV-visible spectrometry reveals the absorbance peak range between 450–475 nm which is in the range of surface plasmon resonance peak of silver nanoparticles with spherical morphology. Antibacterial properties of the synthesized silver nanoparticles were tested on E. coli and significant antimicrobial activity was found with up to 79 % areal inhibition efficiency. The research revealed that the hazelnut husk extract, a reducing agent used in syntheses with different mass concentrations of hazelnut husk extract, also affects the size of the nanoparticles, allowing for the possibility of controlling their size. The antibacterial properties of silver nanoparticles, synthesized in a spherical form of different sizes, correspondingly increased their effect on bacteria which is observed in the inhibition zone. The synthesis of silver nanoparticles, which can be used in many fields for agriculture, cosmetics, and medical purposes, using plant extract and minimal chemicals is crucial because it affects its toxicity. The synthesis of silver nanoparticles with hazelnut husk not only reduces the chemical waste and toxicity, but it is both easily accessible and helps the environment and sustainability by recycling a normally considered bio-waste by-product of high-value-added crop to a technologically valuable product silver. Moreover, synthesized silver nanoparticles could be an essential part of applications ranging from antibacterial surface treatments to drug delivery systems. https://doi.org/10.1002/slct.202302262


An Eco-Friendly Modification of a Walnut Shell Biosorbent for Increased Efficiency in Wastewater Treatment

Herein, we report the performance of some low-cost biosorbents developed by environment-friendly modification of walnut shells. Two types of biosorbents were prepared by ecological modification of walnut shell surfaces: (1) biosorbents obtained by hot water treatment (WSH2O) and (2) biosorbents produced by mercerization (WSNaOH). Different techniques were used to evaluate the morphological, elemental, and structural modification of the biosorbents, by comparison with raw materials. These characterization techniques involved scanning electron microscopy (SEM) coupled with energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy (FTIR). The biosorbents were employed for the removal of methylene blue (MB) and crystal violet (CV) cationic dyes (as model organic pollutants) from aqueous solutions. The kinetic adsorption data mainly followed the pseudo-first-order model. The maximum adsorption capacities of the produced biosorbents ranged from 102 to 110 mg/g and were observed at 330 K. Equilibrium data for adsorption were fitted to Langmuir and Freundlich isotherm models. The calculated values of thermodynamic parameters suggested that the investigated adsorption processes were exergonic (ΔG < 0) and exothermic (ΔH < 0). In addition, a possible valorization of the cost-effective and eco-friendly spent biosorbents was tested by performing secondary adsorption of the anionic dyes.
http://dx.doi.org/10.3390/su15032704


Seasonal variability in physiology and behavior affect the impact of fungicide exposure on honey bee

Honey bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom. The mechanisms by which fungicides affect honey bees are poorly understood and any seasonal variations in their impact are unknown. Here we assess the effects on honey bee colonies of four-week exposure (the approximate duration of the almond pollination season) of a fungicide, Pristine® (25.2% boscalid, 12.8% pyraclostrobin), that has been commonly used for almonds. We exposed colonies to Pristine® in pollen patties placed into the hive, in either summer or fall, and assessed colony brood and worker populations, colony pollen collection and consumption, and worker age of first foraging and longevity. During the summer, Pristine® exposure induced precocious foraging, and reduced worker longevity resulting in smaller colonies. During the fall, Pristine® exposure induced precocious foraging but otherwise had no significant measured effects. During the fall, adult and brood population levels, and pollen consumption and collection, were all much lower, likely due to preparations for winter. Fungicides and other pesticides may often have reduced effects on honey bees during seasons of suppressed colony growth due to bees consuming less pollen and pesticide. https://doi.org/10.1016/j.envpol.2022.120010