Halyomorpha halys, a serious threat for hazelnut in newly invaded areas.

Following its first detection, Halyomorpha halys has become a key pest in many crops in NW Italy. In this area, one of the most important crops is hazelnut, in which the species can cause severe damage through feeding on nuts. Therefore, semi-field trials were carried out in NW Italy to compare the harmfulness of H. halys with that of the local hazelnut bug species, such as Gonocerus acuteangulatusNezara viridula, and Palomena prasina. Additionally, a 2-year field survey was conducted in hazel groves in NW Italy and W Georgia, another important hazelnut cropping area, to assess the presence and abundance of the new invasive species and to evaluate the damage at harvest. Monitoring was carried out by plant beating and by commercial traps throughout the growing season. In semi-field trials, H. halys was the most harmful species, causing the highest damage in kernels, and was able to survive and reproduce at higher rates. During field surveys in NW Italy, H. halys was sampled in groves late in the season in 2015 and, with higher populations, throughout the season in 2016. In W Georgia, bug population levels consistently increased in the 2-year period, resulting in a significant increase in damage at harvest in 2016. A similar trend is hence expected also in NW Italy in the following years. Moreover, data on individuals collected in different points of the hazelnut groves confirmed the border-driven behavior of this pest, leading to consideration of potential integrated pest management solutions. https://doi.org/10.1007/s10340-017-0937-x


Cultivation of black soldier fly larvae on almond byproducts: impacts of aeration and moisture on larvae growth and composition.

BACKGROUND: The increasing production of almonds worldwide has resulted in the significant generation of byproduct streams that require end uses. One potential use for byproducts is for cultivation of additional food sources including insects. Studies were performed to determine if black soldier fly larvae (Hermetia illucens L.) could be cultivated on almond byproducts (hulls and shells) and to examine the effect of aeration and moisture on larvae growth and hull composition. RESULTS: Increasing aeration from 0.04 to 0.36 mL min−1 g dry weight−1 tripled the harvest weight of larvae and increased larvae yield by a factor of five. Larvae calcium content increased by 18% with an increase in aeration from 0.04 to 0.95 mL min−1 g dry weight−1. Moisture content also affected harvest dry weight and yield; increasing moisture content from 480 g kg−1(wet basis) to 680 g kg−1 increased harvest weight by 56% and yield by a factor of 2. Variables did not affect larvae methionine and cysteine content. Low moisture content and aeration rate yielded an environment that supported microbial consumption of hulls over larvae consumption and growth. CONCLUSIONS: The results demonstrate that almond hulls are a suitable feedstock for larvae production under controlled management of moisture content and aeration.


Almond shell as a microporous carbon source for sustainable cathodes in lithium–sulfur batteries.

A microporous carbon derived from biomass (almond shells) and activated with phosphoric acid was analysed as a cathodic matrix in Li–S batteries. By studying the parameters of the carbonization process of this biomass residue, certain conditions were determined to obtain a high surface area of carbon (967 m2 g−1) and high porosity (0.49 cm3 g−1). This carbon was capable of accommodating up to 60% by weight of sulfur, infiltrated by the disulphide method. The C–S composite released an initial specific capacity of 915 mAh g−1 in the Li–S cell at a current density of 100 mA g−1 with a high retention capacity of 760 mAh g−1 after 100 cycles and a coulombic efficiency close to 100%. The good performance of the composite was also observed under higher current rates (up to 1000 mA g−1). The overall electrochemical behaviour of this microporous carbon acting as a sulfur host reinforces the possibility of using biomass residues as sustainable sources of materials for energy storage.


Quality of raisins under different packaging and storage conditions.

We determined the effect of different storage systems and packaging on the quality of ‘Sultana Seedless’ raisins. The fruit were packed in plastic boxes and kept under controlled atmosphere (1% O2 and 3% CO2) at 0°C and 75–85% RH for 12 months (CA), packed in vacuum bags and kept under normal atmosphere (21% O2–0.03% CO2) (NA) and packed in thin plastic bags + carton boxes and kept under ambient condition (semi-refrigeration), at 0°C and 90% ± 5 RH for 12 months (AC). Fruit kept under CA or NA had acceptable fruit quality in terms of general appearance and taste for 10 months, whereas fruit quality was unacceptable at that time under AC. Fruit under NA had less weight loss than fruit under the other conditions. Differences in skin colour were relatively small, apart from the h° values. Concentrations of ochratoxin A were generally higher with AC. External appearance and taste were better with CA and NA. As a result, raisins can be stored for 10 months with good quality in vacuum package in NA (0°C and 90% ± 5 RH) and CA (1% O2–3% CO2) at 0°C and 75–85% RH.


Determination of Sulfur in Grape and Apricot Samples Using High-resolution Continuum Source Electrothermal Molecular Absorption Spectrometry.

The determination of sulfur in apricot and grape samples was performed by using high-resolution continuum source electrothermal molecular absorption spectrometry based on vaporization of the carbon monosulfide (CS) molecule. CS forms in the gas phase without the addition of any molecule-forming element, since graphite cuvette contains plenty of carbon as well as food samples. A mixture of 15 μg Pd + 10 μg Mg was used in solution as the chemical modifier. The best sensitivity was obtained at 900°C of the pyrolysis temperature with a K2SO4calibration solution. The calibration plot drew a linear path between 50 and 1600 ng of sulfur, and the limit of detection was found to be 23 ng. The accuracy of the method was confirmed with the use of a standard reference material (Rice Flour, NIST SRM 1568a). The sulfur content in chemically dried apricot samples (1987 ± 45 mg/kg) was determined to be higher than that of apricot samples dried under sunshine.


Nut sensitization profile in Southern Taiwan.

BACKGROUND/PURPOSE: To evaluate the relationship between serum-specific immunoglobulin E (IgE) to peanuts/tree nuts and their clinical manifestations in atopic diseases. METHOD: Serum from people with the classical symptoms of asthma, allergic rhinitis (AR), or atopic dermatitis (AD) was collected for the measurement of serum-specific IgE to peanuts, cashew nuts, Brazil nuts, almonds, and coconuts. Cases with possible sensitization to these nuts (serum specific IgE ≧ 0.35 kU/L) were selected and their clinical relationships with physician-diagnosed asthma, allergic rhinitis, or atopic dermatitis were analyzed. RESULT: Compared with non-sensitization group, people with peanut/tree nut sensitization have higher prevalence of atopic dermatitis, but no such difference noted in the prevalence of allergic rhinitis. In the situation of asthma, people with sensitization to peanuts and Brazil nuts, but not other nuts, have higher prevalence of asthma than people without sensitization to any nut (p < 0.001 and p < 0.05, respectively). Binary logistic regression analysis also showed positive associations between peanut (OR: 1.164, p value = 0.017) and Brazil nut (OR: 1.304, p value = 0.055) sensitization and asthma. The associations between peanut and Brazil nut sensitization and asthma were independent of the prevalence of other atopic diseases. CONCLUSION: People in Asia may have less severe allergic effects as in Western countries, but sensitization to specific food allergens such as peanuts or Brazil nuts may predispose individuals to asthma, which could be helpful in diagnosis and deserves more attention than previously considered.


Rapid Antibody Selection Using Surface Plasmon Resonance for High-Speed and Sensitive Hazelnut Lateral Flow Prototypes.

Lateral Flow Immunoassays (LFIAs) allow for rapid, low-cost, screening of many biomolecules such as food allergens. Despite being classified as rapid tests, many LFIAs take 10⁻20 min to complete. For a really high-speed LFIA, it is necessary to assess antibody association kinetics. By using a label-free optical technique such as Surface Plasmon Resonance (SPR), it is possible to screen crude monoclonal antibody (mAb) preparations for their association rates against a target. Herein, we describe an SPR-based method for screening and selecting crude anti-hazelnut antibodies based on their relative association rates, cross reactivity and sandwich pairing capabilities, for subsequent application in a rapid ligand binding assay. Thanks to the SPR selection process, only the fast mAb (F-50-6B12) and the slow (S-50-5H9) mAb needed purification for labelling with carbon nanoparticles to exploit high-speed LFIA prototypes. The kinetics observed in SPR were reflected in LFIA, with the test line appearing within 30 s, almost two times faster when F-50-6B12 was used, compared with S-50-5H9. Additionally, the LFIAs have demonstrated their future applicability to real life samples by detecting hazelnut in the sub-ppm range in a cookie matrix. Finally, these LFIAs not only provide a qualitative result when read visually, but also generate semi-quantitative data when exploiting freely downloadable smartphone apps.


Tree Nut Consumption and Adipose Tissue Mass: Mechanisms of Action.

There is concern that tree nuts may cause weight gain due to their energy density, yet evidence shows that tree nuts do not adversely affect weight status. Epidemiologic and experimental studies have shown a reduced risk of chronic diseases with tree nut consumption without an increased risk of weight gain. In fact, tree nuts may protect against weight gain and benefit weight-loss interventions. However, the relation between tree nut consumption and adiposity is not well understood at the mechanistic level. This review summarizes the proposed underlying mechanisms that might account for this relation. Evidence suggests that tree nuts may affect adiposity through appetite control, displacement of unfavorable nutrients, increased diet-induced thermogenesis, availability of metabolizable energy, antiobesity action of bioactive compounds, and improved functionality of the gut microbiome. The gut microbiome is a common factor among these mechanisms and may mediate, in part, the relation between tree nut consumption and reduced adiposity. Further research is needed to understand the impact of tree nuts on the gut microbiome and how the gut microbial environment affects the nutrient absorption and metabolism of tree nuts. The evidence to date suggests that tree nut consumption favorably affects body composition through different mechanisms that involve the gut microbiome. A better understanding of these mechanisms will contribute to the evolving science base that addresses the causes and treatments for overweight and obesity.

Pistachio Consumption Prevents and Improves Lipid Dysmetabolism by Reducing the Lipid Metabolizing Gene Expression in Diet-Induced Obese Mice.

Pistachios contain beneficial substances such as unsaturated fatty acids, phytosterols, and polyphenols. In the present study, we investigated if pistachio consumption is able to prevent or to revert hyperglycemia, dyslipidemia, hepatic steatosis, and adipose tissue morphological alterations caused by high fat diet (HFD) in the mouse. Moreover, the impact of pistachio intake on the mRNA expression of peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid transport proteins (FAT-P), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding transcription factor-1c (SREBP-1c) in liver and adipose tissue was also analyzed. No change in body weight, food intake, and hyperglycemia was observed between mice consuming pistachios (HFD-P) and HFD mice. Pistachio intake was able to prevent but not to reverse HFD-induced hypertriglyceridemia. Cholesterol plasma levels, steatosis grading, body fat mass, and adipocyte size were significantly lower in HFD-P group compared to HFD in both prevention and reversal protocol. Pistachio-diet was able to prevent HFD-induced overexpression of PPAR-γ, FAS, and SCD1 in the liver and SREBP-1c, PPAR-γ, and FAT-P in adipose tissue. Similarly, HFD-P significantly ameliorated the expression levels of FAT-P and SCD1 in the liver and SREBP-1c, FAS, and SCD1 in adipose tissue of obese mice. The present study shows that pistachio consumption is able to prevent and to ameliorate obesity-related dysfunctions by positively modulating the expression of genes linked to lipid metabolism.

Antioxidative Efficacy of a Pistacia Lentiscus Supplement and Its Effect on the Plasma Amino Acid Profile in Inflammatory Bowel Disease: A Randomised, Double-Blind, Placebo-Controlled Trial.

Oxidative stress is present in patients with Inflammatory Bowel Disease (IBD), and natural supplements with antioxidant properties have been investigated as a non-pharmacological approach. The objective of the present study was to assess the effects of a natural Pistacia lentiscus (PL) supplement on oxidative stress biomarkers and to characterise the plasma-free amino acid (AA) profiles of patients with active IBD (Crohn's disease (CD) N = 40, ulcerative colitis (UC) N = 20). The activity was determined according to 5 ≤ Harvey Bradshaw Index ≤ 16 or 2 ≤ Partial Mayo Score ≤ 6. This is a randomised, double-blind, placebo-controlled clinical trial. IBD patients (N = 60) were randomly allocated to PL (2.8 g/day) or to placebo for 3 months being under no treatment (N = 21) or under stable medical treatment (mesalamine N = 24, azathioprine N = 14, and corticosteroids N = 23) that was either single medication (N = 22) or combined medication (N = 17). Plasma oxidised, low-density lipoprotein (oxLDL), total serum oxidisability, and serum uric acid were evaluated at baseline and follow-up. OxLDL/LDL and oxLDL/High-Density Lipoprotein (HDL) ratios were calculated. The plasma-free AA profile was determined by applying a gas chromatography/mass spectrometry analysis. oxLDL (p = 0.031), oxLDL/HDL (p = 0.020), and oxLDL/LDL (p = 0.005) decreased significantly in the intervention group. The mean change differed significantly in CD between groups for oxLDL/LDL (p = 0.01), and, in the total sample, both oxLDL/LDL (p = 0.015) and oxLDL/HDL (p = 0.044) differed significantly. Several changes were reported in AA levels. PL ameliorated a decrease in plasma-free AAs seen in patients with UC taking placebo. In conclusion, this intervention resulted in favourable changes in oxidative stress biomarkers in active IBD.