Development of PCR, LAMP and qPCR Assays for the Detection of Aflatoxigenic Strains of Aspergillus flavus and A. parasiticus in Hazelnut.

Aspergillus flavus and A. parasiticus are two species able to produce aflatoxins in foodstuffs, and in particular in hazelnuts, at harvest and during postharvest phase. As not all the strains of these species are aflatoxin producers, it is necessary to develop techniques that can detect aflatoxigenic from not aflatoxigenic strains. Two assays, a LAMP (loop-mediated isothermal amplification) and a real time PCR with TaqMan® probe were designed and validated in terms of specificity, sensitivity, reproducibility, and repeatability. The capability of the strains to produce aflatoxins was measured in vitro and both assays showed to be specific for the aflatoxigenic strains of A. flavus and A. parasiticus. The limit of detection of the LAMP assay was 100-999 picograms of DNA, while the qPCR detected 160 femtograms of DNA in hazelnuts. Both techniques were validated using artificially inoculated hazelnuts and naturally infected hazelnuts. The qPCR was able to detect as few as eight cells of aflatoxigenic Aspergillus in naturally infected hazelnut. The combination of the LAMP assay, which can be performed in less than an hour, as screening method, with the high sensitivity of the qPCR, as confirmation assay, is able to detect aflatoxigenic strains already in field, helping to preserve the food safety of hazelnuts.
 


In Vitro Protein Digestibility and Fatty Acid Profile of Commercial Plant-Based Milk Alternatives.

Plant-based milk alternatives (PBMA) are a new popular food trend among consumers in Europe and North America. The forecast shows that PBMA will double their value by 2023. The objective of this study was to analyze the nutritional value of commercial products in terms of their fatty acid profile and protein digestibility from commercial PBMA. Eight commercially available PBMA were selected for fatty acid analysis, performed with gas chromatography of methylated fatty acids (GC-FAME), and, from these, four commercial products (almond drink, hemp drink, oat drink, and soy drink) were selected for a short-term in vitro protein digestibility (IVPD) analysis. The fatty acid analysis results showed that most of the products predominantly contained oleic acid (C18:1 ω-9) and linoleic acid (C18:2 ω-6). Hemp drink contained the highest omega-6/omega-3 (ω6/ω3) ratio among all tested products (3.43). Oat drink and almond drink were the PBMA with the highest short-term protein digestibility, non-significantly different from cow's milk, while soy drink showed the lowest value of protein digestibility. In conclusion, PBMA showed a significant variability depending on the plant source, both in terms of fatty acid composition and protein digestibility. These results provide more in-depth nutritional information, for future product development, and for consumer's choice.


Reduced peanut sensitization with maternal peanut consumption and early peanut introduction while breastfeeding.

New guidelines for peanut allergy prevention in high-risk infants recommend introducing peanut during infancy but do not address breastfeeding or maternal peanut consumption. We assessed the independent and combined association of these factors with peanut sensitization in the general population CHILD birth cohort (N = 2759 mother-child dyads). Mothers reported peanut consumption during pregnancy, timing of first infant peanut consumption, and length of breastfeeding duration. Child peanut sensitization was determined by skin prick testing at 1, 3, and 5 years. Overall, 69% of mothers regularly consumed peanuts and 36% of infants were fed peanut in the first year (20% while breastfeeding and 16% after breastfeeding cessation). Infants who were introduced to peanut early (before 1 year) after breastfeeding cessation had a 66% reduced risk of sensitization at 5 years compared to those who were not (1.9% vs. 5.8% sensitization; aOR 0.34, 95% CI 0.14-0.68). This risk was further reduced if mothers introduced peanut early while breastfeeding and regularly consumed peanut themselves (0.3% sensitization; aOR 0.07, 0.01-0.25). In longitudinal analyses, these associations were driven by a higher odds of outgrowing early sensitization and a lower odds of late-onset sensitization. There was no apparent benefit (or harm) from maternal peanut consumption without breastfeeding. Taken together, these results suggest the combination of maternal peanut consumption and breastfeeding at the time of peanut introduction during infancy may help to decrease the risk of peanut sensitization. Mechanistic and clinical intervention studies are needed to confirm and understand this "triple exposure" hypothesis.


IgE-binding to vicilin-like antimicrobial peptides is associated with systemic reactions to macadamia nut.

Background: Macadamia nut can induce fatal allergic reactions and changes in dietary habits will raise their consumption in industrialised countries. Until now diagnosis of macadamia nut allergy by sIgE solely relies on the macadamia nut extract, but single components are lacking. Methods: Macadamia nut proteins recognised by IgE from 2 macadamia nut extract positive sera were identified by mass spectrometry (vicilin-like antimicrobial peptides: VLAP). Sensitisation to macadamia nut extract and heterologously expressed isoform VLAP-2-3 was evaluated in 82 nut allergic (NA) and 27 tolerant (NT) patients (no tree nut allergy reported) comprehending 10 macadamia nut allergic (MA) and 18 explicitly reported macadamia nut tolerant patients (MT), using line blots. Co-sensitisation to additional VLAP isoforms and other vicilins was evaluated in 8 MA, 12 MT and 14 NA patients sensitised to VLAP-2-3. Functional properties were determined by indirect basophil activation. Results: Even though proteins recognised by IgE were identified as VLAP-2-1, 2-2 and 2-3, only peptides specifically belonging to VLAP-2-3 were detected by mass spectrometry. The macadamia nut extract was recognised by 33% of NA patients (27/82) including 3 MA patients and 26% of NT patients (7/27, 3 MT). Similarly, 29% of NA (24/82) patients showed partly strong sIgE-binding to VLAP-2-3 including 3 MA patients with systemic reactions to macadamia nut. Contrary, VLAP-2-3 was recognised by only 2 NT (1 MT) patients (7%) with very low sIgE titres. Simultaneous recognition of the isoforms VLAP-2-1 and 2-2 was observed in all patients positive for VLAP-2-3 with partly reduced sIgE titres in 59% of these patients. Additionally, all three VLAP isoforms were able to repeatedly induce BAT reactivity upon sensitisation with a MA serum.


Usefulness of r Ana o 3 assessment before oral food challenge to pistachio.

Cashew and pistachio both belong to the Anarcardiacae family. Cashew and pistachio allergies may cause severe symptoms such as anaphylaxis with a very low eliciting dose1,2 . The cashew 2S albumin r Ana o 3 is the only singleplex component-resolved diagnosis immunoassay currently available in clinical practice3-5 . Its structural similarity with the pistachio 2S albumin may explain the cross-reactivity between cashew and pistachio6 . The main objective of this study was to assess the performance of specific IgE to r Ana o 3 for the diagnosis of pistachio allergy.


Food and food products associated with food allergy and food intolerance-An overview.

Immune-mediated food allergy and non-immune mediated food intolerance are categorized as the most common adverse reactions resulting from the ingestion of certain foods. As there is no standard treatment, the possible remedy to avoid exposure to these adverse reactions is adhering to a strict diet that eliminates allergic and intolerant foods. The commonly consumed foods including dairy products, egg, fish, shellfish, tree nuts, peanut, soybean, and wheat-based products are proven to cause food allergy. Foods containing lactose, gluten, high FODMAPs, biogenic amines, and certain food additives leads to potential health risks in intolerant individuals. Besides, there are various foods whose mechanism of action in triggering food allergy and intolerance is yet to be defined. However, the public in-depth understanding of natural foods, processed foods, and packaged food products that induce allergic reactions and intolerance remains low. Therefore, awareness of diet that partially or completely excludes the intake of certain foods associated with these reactions should be widespread among the consumers.


Basophil activation test shows high accuracy in the diagnosis of peanut and tree nut allergy: The Markers of Nut Allergy Study.

Background: Peanut and tree nut allergies are the most important causes of anaphylaxis. Co-reactivity to more than one nut is frequent, and co-sensitization in the absence of clinical data is often obtained. Confirmatory oral food challenges (OFCs) are inconsistently performed. Objective: To investigate the utility of the basophil activation test (BAT) in diagnosing peanut and tree nut allergy. Methods: The Markers Of Nut Allergy Study (MONAS) prospectively enrolled patients aged 0.5-17 years with confirmed peanut and/or tree nut (almond, cashew, hazelnut, pistachio, walnut) allergy or sensitization fromCanadian (n=150) and Austrian (n=50) tertiary pediatric centers. BAT using %CD63+ basophils (SSClow/CCR3pos) as outcome was performed with whole blood samples stimulated with allergen extracts of each nut (0.001-1000ng/mL protein). BAT results were assessed against confirmed allergic status in a blinded fashion to develop a generalizable statistical model for comparisonto extract and marker allergen-specificIgE. Results: A mixed effect model integrating BAT results for 10 and 100 ng/mL of peanut and individual tree nut extracts was optimal. The area under the ROC curve (AUROC) was 0.98 for peanut, 0.97 for cashew, 0.92 for hazelnut, 0.95 for pistachio, and 0.97 for walnut. The BAT outperformed sIgE testing for peanut or hazelnut and was comparable for walnut (AUROC 0.95, 0.94, 0.92) ina sub-analysis in sensitized patients undergoing OFC. Conclusions: BAT can predict allergic clinical status to peanut and tree nuts in multi-nut sensitized children and may reduce the need for high-risk OFCs in patients.


Walnut-Enriched Diet Elevated α-Linolenic Acid, Phytoprostanes, and Phytofurans in Rat Liver and Heart Tissues and Modulated Anti-inflammatory Lipid Mediators in the Liver.

α-Linolenic acid (ALA) and its non-enzymatic oxidized products, namely, phytoprostanes and phytofurans, are found in some nuts. The uptake and deposition of these compounds are not well-defined. Walnut has high ALA and a considerable amount of phytoprostanes and phytofurans compared to other common nuts. When fed to rodents, ALA and eicosapentaenoic acid levels increased in the liver and heart tissues compared to the control diet. Furthermore, phytoprostanes and phytofurans were elevated 3-fold in both tissues after a walnut diet, indicating that they are not only contributed from the diet but also generated through in vivo autoxidation of ALA found in the walnuts. It was further noted that a walnut diet reduced 5-F2t-isoprostanes and 12-hydroxyeicosatetraenoic acid and induced 4-F4t-neuroprostane and significant amounts of anti-inflammatory hydroxydocosahexaenoic acid in the liver only. Altogether, high ALA in a walnut diet elevated phytoprostanes and phytofurans in the liver and heart tissues and showed the regulation of anti-inflammatory lipid mediators in the liver only.


A Walnut Diet in Combination with Enriched Environment Improves Cognitive Function and Affects Lipid Metabolites in Brain and Liver of Aged NMRI Mice.

This in vivo study aimed to test if a diet enriched with 6% walnuts alone or in combination with physical activity supports healthy ageing by changing the oxylipin profile in brain and liver, improving motor function, cognition, and cerebral mitochondrial function. Female NMRI mice were fed a 6% walnut diet starting at an age of 12 months for 24 weeks. One group was additionally maintained in an enriched environment, one group without intervention served as control. After three months, one additional control group of young mice (3 weeks old) was introduced. Motor and cognitive functions were measured using Open Field, Y-Maze, Rotarod and Passive Avoidance tests. Lipid metabolite profiles were determined using RP-LC-ESI(-)-MS/MS in brain and liver tissues of mice. Cerebral mitochondrial function was characterized by the determination of ATP levels, mitochondrial membrane potential and mitochondrial respiration. Expression of genes involved with mito- and neurogenesis, inflammation, and synaptic plasticity were determined using qRT-PCR. A 6% walnut-enriched diet alone improved spatial memory in a Y-Maze alternation test (p < 0.05) in mice. Additional physical enrichment enhanced the significance, although the overall benefit was virtually identical. Instead, physical enrichment improved motor performance in a Rotarod experiment (p* < 0.05) which was unaffected by walnuts alone. Bioactive oxylipins like hydroxy-polyunsaturated fatty acids (OH-PUFA) derived from linoleic acid (LA) were significantly increased in brain (p** < 0.01) and liver (p*** < 0.0001) compared to control mice, while OH-PUFA of α-linolenic acid (ALA) could only be detected in the brains of mice fed with walnuts. In the brain, walnuts combined with physical activity reduced arachidonic acid (ARA)-based oxylipin levels (p < 0.05). Effects of walnut lipids were not linked to mitochondrial function, as ATP production, mitochondrial membrane potential and mitochondrial respiration were unaffected. Furthermore, common markers for synaptic plasticity and neuronal growth, key genes in the regulation of cytoprotective response to oxidative stress and neuronal growth were unaffected. Taken together, walnuts change the oxylipin profile in liver and brain, which could have beneficial effects for healthy ageing, an effect that can be further enhanced with an active lifestyle. Further studies may focus on specific nutrient lipids that potentially provide preventive effects in the brain.


Nut Consumption for Cognitive Performance: A Systematic Review.

Diet is considered an important modifiable lifestyle factor capable of attenuating early cognitive changes in healthy older people. The inclusion of nuts in the diet has been investigated as a dietary strategy for maintenance of brain health across the lifespan. This review aimed to present up-to-date evidence regarding the association between nut intake and cognitive performance. Four databases (Ovid MEDLINE, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL) Plus, and Embase) were systematically searched from inception to April 2020. Eligible articles were interventional or observational studies in humans aged ≥18 y that measured the effects (or association) of nuts (almond, hazelnut, macadamia, pistachio, walnut, pecan, pine nut, Brazil nut, cashew, peanut) on cognitive outcomes. Out of the 2374 articles identified in the searches, 22 involving 43,793 participants met the criteria and were ultimately included in this review. Memory (immediate and delayed), attention, processing speed, executive function, and visual-spatial ability, as well as risk of mild cognitive impairment, were the outcomes investigated. Lack of consistency across the studies regarding study design, types of nut used, and cognitive outcomes measured resulted in inconsistent evidence that the regular consumption of mixed nuts has a protective effect on cognition in adults of different ages. Nonetheless, we observed that studies targeting populations with a higher risk of cognitive decline tended to find a more favorable outcome. Furthermore, homogeneous findings were observed in the studies that specifically addressed the association between walnut consumption and cognitive performance: out of the 6 studies, including 2 randomized controlled trials, only 1 did not find a positive association.