Assessment of Raisins Byproducts for Environmentally Sustainable Use and Value Addition
This study investigated the potential and sustainable use of the biomass derived from various stages of the grape drying process. A total of eleven byproducts, each containing varying organic materials, were produced and subjected to testing. Ultimate analysis, as well as analyses of heating values, chemical composition, lignocellulose composition, total solids concentration and biogas production were performed with the recommended criteria and assessment methods. The results reveal that carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) levels were significantly different among the byproducts. The ash content of byproducts 5–11 ranged from 3.56 to 5.11%, which was lower than the estimated values in the other byproducts. The analysis of higher heating value showed significantly higher calorific values for byproducts 10 and 11 (22.73 ± 0.08 and 22.80 ± 0.07 MJ kg−1, respectively). Byproducts 1–9 had lower sugar content than byproducts 10 and 11 (rejected raisins). Byproducts 5–9 had the lowest lignin content, and there were no significant differences in neutral detergent fiber (NDF) contents between byproducts 1–6. The highest accumulated biogas volume after 40 days was 11.50 NL L−1 of substrate for byproduct group C (byproducts 10 to 11), followed by 11.20 NL L−1 of substrate for byproduct group B (byproducts 5–9) and 9.51 NL L−1 of substrate for byproduct group A (byproducts 1–4). It is concluded that byproducts consisting of biomass derived at different stages of raisin production may be an effective solid fuel and energy source. The amounts of volatile solids in the tested raisin processing byproducts indicated their appropriateness for pyrolysis conversion to a liquid product with high volatile content. https://doi.org/10.3390/agriengineering5030091
The production of environmentally friendly building materials out of recycling walnut shell waste: a brief review
Agricultural waste is one of the wastes with a significant value in producing environmentally friendly materials that can be used in the construction sector. This review paper focuses on the potential uses of walnut shell in some building materials. Walnut shell is a type of agricultural waste that can be converted from waste into usable materials by incorporating it into the manufacture of some building materials to achieve sustainability in the construction industry. Recently, walnut waste has drawn the attention of researchers to generate building-friendly materials to boost sustainability in the construction field. In this sense, the walnut shell’s low specific gravity makes it a viable material, as a cheap agricultural waste product, for the development of building materials. According to a survey of the literature, walnut shells can be utilized in the production of structural elements and thermal insulating concrete, up to 30% and 50% as particles respectively. https://doi.org/10.1007/s13399-023-04760-2
Cashew nut shell oil as a potential feedstock for biodiesel production: An overview.
Biodiesel outperforms diesel in emissions and engine performance. They burn efficiently in diesel engines and are eco-friendly. Since cashew nut shell liquid (CNSO) is waste, commercial biodiesel production from it should be profitable. CNSO is cheap and can reduce cashew processing factory waste. From cashew kernels, CNSL is extracted using various mechanical, thermal, and solvent extraction techniques. This article examines current research into using cashew nutshell liquid biodiesel (CNSLBD) in diesel engines. The work also discusses Indian biodiesel demand, availability, export information, life cycle cost analysis, cost economics of per hectare yield, Indian government initiative of CNSO. This review also evaluates the viability of this fuel as an alternative energy source. CNSLBD is a prospective alternative fuel that has the potential to benefit both the cashew nut industry and the energy industry. In addition to this, the study examines the procedures for extracting CNSO. According to the findings of the study, CNSO is a prospective alternative fuel that has the potential to benefit both the cashew nut industry and the energy industry. https://doi.org/10.1002/bit.28515
High biomass filled biodegradable plastic in engineering sustainable composites
The production of single-use, non-renewable plastic has persistently impacted the environment through non-biodegradable plastic accumulation. Injection-moulded biodegradable polymer blend [poly(butylene succinate-co-butylene-adipate) (PBSA) and poly(butylene adipate-co-terephthalate) (PBAT)] with an inexpensive filler, walnut shell powder (WSP), enables an appropriate melt flow behaviour after incorporating compatibilizer as confirmed by rheological analysis. The sustainable composites with 60 wt% WSP showed a decrement of 68.4% in tensile strength as compared to PBSA/PBAT blend. However, the inclusion of a 5 wt% compatibilizer in PBSA/PBAT/60wt%WSP composite increased tensile strength by 48.7%, indicating improved interfacial adhesion. Further, the improvements in tensile (694%) and flexural moduli (461%) of PBSA/PBAT blend were observed with the addition of 60 wt% WSP in presence of 7 wt% compatibilizer due to fibrillar morphology of filler. Thus, signifying enhanced stiffness with increased filler, leading to a composite suitable for rigid packaging. Scanning electron microscopy (SEM) confirmed an improved adhesion between matrix and filler interfaces with the addition of a compatibilizer as gaps decreased, subsequently leading to increased mechanical properties. The novelty of this work establishes a high loading of filler can be incorporated with biodegradable polymers and improved properties in presence of compatibilizer makes it more suitable for injection moulding applications to produce a low-cost biocomposite capable of being used as a single-use plastic alternative in rigid packaging. https://doi.org/10.1016/j.jcomc.2023.100388
Cationic UV-curing of isosorbide-based epoxy coating reinforced with macadamia nut shell powder
The scientific community is deeply investigating bio-based derivatives to reduce the consumption of fossil-based material and lessen the environmental impact. The development of bio-based plastic is one of the main challenges that needs to be overcome to achieve the goal of sustainability and green economy. In this view, we exploit the use of a bio-based monomer, isosorbide, for the production of bio-based resins which can be used in coating applications. The isosorbide was functionalized in a two-step reaction to introduce epoxy groups that subsequently were activated via UV radiation to trigger cross-linking to obtain dry films. The curing process was followed by means of real time analyses such as FT-IR, photo-DSC and photorheology. The bio-based resin showed the feasibility to be used in UV-cationic curing reaching conversion above 85 %. Furthermore, a bio-based filler from macadamia nutshell was selected as an additive to the formulation with the aim of increasing the surface hardness of the final coating. A significant increase in hardness was observed for coatings containing 30 wt% of macadamia nut shell powder (MAC). In this case, the hardness reached 72 Shore D, whereas the pristine bio-based epoxy resin achieved only 19 Shore D. Thermo-mechanical analysis of the final properties was carried out by means of DMTA, DSC and tensile test. Interestingly, the addition of MAC resulted in a noticeable increase of the Tg, from 24 °C for the pristine resin to 39 °C for the coating with 20 wt% of filler. Lastly, a morphology assessment was performed to investigate the size and shape of the filler and the interaction between the polymer matrix and the filler. https://doi.org/10.1016/j.porgcoat.2023.107949
Valorization of pistachio industrial waste: Simultaneous recovery of pectin and phenolics, and their application in low-phenylalanine cookies for phenylketonuria
This study introduces a sustainable approach to simultaneously produce pectin and phenolic compounds from pistachio industrial waste and applies them in the formulation of low-phenylalanine cookies. The co-optimization process was performed using the microwave-assisted technique and a Box-Behnken design, considering four variables and two responses: pectin yield and total phenolic content (TPC). The co-optimized condition (microwave power of 700 W, irradiation time of 210 s, pH level of 1.02, and LSR of 20 mL/g) resulted in a pectin yield of 15.85 % and a TPC of 10.12 %. The pectin obtained under co-optimized condition was evaluated for its physicochemical, structural, and thermal properties and the phenolic extract for its antiradical activity. Characterization of the pectin sample revealed a high degree of esterification (44.21 %) and a galacturonic acid-rich composition (69.55 %). The average molecular weight of the pectin was determined to be 640.236 kDa. FTIR and 1H NMR spectroscopies confirmed the structure of pectin, with an amorphous nature and high thermal stability observed through XRD and DSC analysis. Additionally, the extract exhibited significant antiradical activity comparable to butylated hydroxyanisole and ascorbic acid. The isolated ingredients were used to formulate low-protein, low-phenylalanine cookies for phenylketonuria patients. The addition of 0.5 % pectin and 1 mL/g extract led to increased moisture content (from 9.05 to 12.89 %) and specific volume (from 7.28 to 9.90 mL/g), decreased hardness (from 19.44 to 10.39 N × 102), and improved antioxidant properties (from 5.15 % to 44.60 % inhibition) of the cookies. Importantly, there was no significant increase observed in the phenylalanine content of the samples with pectin and extract addition. Furthermore, sensory evaluation scores demonstrated significantly higher scores for taste, odor, texture, and overall acceptability in cookies enriched with 0.5 % pectin and 1 mL/g extract, with scores of 4.53, 3.93, 4.40, and 4.60, respectively. https://doi.org/10.1016/j.ijbiomac.2023.126086
Natural variation in photosynthesis and water use efficiency of locally adapted Persian walnut populations under drought stress and recovery
Persian walnut is a drought-sensitive species with considerable genetic variation in the photosynthesis and water use efficiency of its populations, which is largely unexplored. Here, we aimed to elucidate changes in the efficiency of photosynthesis and water content using a diverse panel of 60 walnut families which were submitted to a progressive drought for 24 days, followed by two weeks of re-watering. Severe water-withholding reduced leaf relative water content (RWC) by 20%, net photosynthetic rate (Pn) by 50%, stomatal conductance (gs) by 60%, intercellular CO2 concentration (Ci) by 30%, and transpiration rate (Tr) by 50%, but improved water use efficiency (WUE) by 25%. Severe water-withholding also inhibited photosystem II functionality as indicated by reduced quantum yield of intersystem electron transport (φEo) and transfer of electrons per reaction center (ET0/RC), also enhanced accumulation of QA (VJ) resulted in the reduction of the photosynthetic performance (PIABS) and maximal quantum yield of PSII (FV/FM); while elevated quantum yield of energy dissipation (φDo), energy fluxes for absorption (ABS/RC) and dissipated energy flux (DI0/RC) in walnut families. Cluster analysis classified families into three main groups (tolerant, moderately tolerant, and sensitive), with the tolerant group from dry climates exhibiting lesser alterations in assessed parameters than the other groups. Multivariate analysis of phenotypic data demonstrated that RWC and biophysical parameters related to the chlorophyll fluorescence such as FV/FM, φEo, φDo, PIABS, ABS/RC, ET0/RC, and DI0/RC represent fast, robust and non-destructive biomarkers for walnut performance under drought stress. Finally, phenotype-environment association analysis showed significant correlation of some photosynthetic traits with geoclimatic factors, suggesting a key role of climate and geography in the adaptation of walnut to its habitat conditions. https://doi.org/10.1016/j.plaphy.2023.107859
An environmentally friendly approach for industrial wastewater treatment and bio-adsorption of heavy metals using Pistacia soft shell (PSS) through flocculation-adsorption process
In this research, the potential application of Pistacia soft shell (PSS) was investigated as a novel bio-based flocculant for pulp and paper wastewater (PPWW) treatment. In line with this, after characterization of the PSS, the removal efficiencies of chemical oxygen demand (COD), turbidity and heavy metals (Cu2+ and Pb2+) from PPWW were investigated with different dosage of PSS. The results were compared with alum as a reference flocculant. In addition, the effect of pH adjustment on the flocculation-adsorption performance of PSS was studied under acidic and alkaline condition. Zeta potential, BET, FTIR and SEM as well as kinetics and isotherm analyses were conducted for mechanistic understanding. According to the results, PSS treatment could remove COD, turbidity, Cu2+ and Pb2+ up to 67%, 87%, 70% and 74%, respectively which were better than alum: 56%, 85%, 31% and 35%. It was observed that, pH adjustment significantly improved the performance of PSS treatment. Maximum removal efficiencies of 92%, 95%, 97% and 98% were achieved for COD, turbidity, Cu2+ and Pb2+, respectively, under optimal condition of using 2 g/L PSS at pH 9. The mechanism analysis revealed that the high removal efficiency of PSS is related to the dual flocculation-adsorption of bridging and sweeping mechanisms. The results of this study suggested PSS as a promising, sustainable and eco-friendly bio-based flocculant and adsorbent for industrial wastewater treatment. https://doi.org/10.1016/j.envres.2023.116595
Long-term intensive management reduced the soil quality of a Carya dabieshanensis forest
The evaluation of soil quality can provide new insights into the sustainable management of forests. This study investigated the effects of three types of forest management intensities (non-management (CK), extensive management (EM), and intensive management (IM)), and five management durations (0, 3, 8, 15, and 20 years) on the soil quality of a Carya dabieshanensis forest. Further, minimum data sets (MDS) and optimized minimum data sets (OMDS) were established to evaluate the soil quality index (SQI). A total of 20 soil indicators representing its physical, chemical, and biological properties were measured for the 0-30 cm layer. Using one-way ANOVA and principal component analysis (PCA), the total data set (TDS), the minimum data set (MDS), and optimized minimum data set (OMDS) were established. The MDS and OMDS contained three (alkali hydrolyzed nitrogen (AN), soil microbial biomass nitrogen (SMBN), and pH) and four (total phosphorus (TP), soil organic carbon (SOC), AN, and bulk density (BD)) soil indicators, respectively. The SQI derived from the OMDS and TDS exhibited a stronger correlation (r = 0.94, p < 0.01), which was suitable for evaluating the soil quality of the C. dabieshanensis forest. The evaluation results revealed that the soil quality was highest during the early stage of intensive management (IM-3), and the SQI of each soil layer was 0.81 ± 0.13, 0.47 ± 0.11, and 0.38 ± 0.07, respectively. With extended management times, the degree of soil acidification increased, and the nutrient content decreased. Compared with the untreated forest land the soil pH, SOC, and TP decreased by 2.64-6.24%, 29.43-33.04%, and 43.63-47.27%, respectively, following 20 years of management, while the SQI of each soil layer decreased to 0.35 ± 0.09, 0.16 ± 0.02 and 0.12 ± 0.06, respectively. In contrast to extensive management, the soil quality deteriorated more rapidly under longer management and intensive supervision. The OMDS established in this study provides a reference for the assessment of soil quality in C. dabieshanensis forests. In addition, it is suggested that the managers of C. dabieshanensis forests should implement measures such as increasing the amount of P-rich organic fertilizer and restoring vegetation to increase soil nutrient resources for the gradual restoration of soil quality. https://doi.org/10.1038/s41598-023-32237-9
Effect of drought stress and subsequent re-watering on the physiology and nutrition of Pistacia vera and Pistacia atlantica
Arid and semi-arid regions are characterised by extreme conditions including drought stress and salinity. These factors profoundly affect the agricultural sector. The objective of this work is to study the effect of drought and re-watering on leaf gas exchange, chlorophyll fluorescence and mineral nutrition in Pistacia vera and Pistacia atlantica. Water stress was applied to individuals of P. vera and P. atlantica for 23days, followed by rehydration for 7days. The results showed a clear reduction in water relations, leaf gas exchange and chlorophyll content in P. vera. Compared to P. vera, P. atlantica maintained less affected water status, total chlorophyll content, leaf gas exchange and chlorophyll fluorescence, stable Zn and Fe proportion, and even elevated K and Cu. The changes in the chlorophyll fluorescence parameter were manifested particularly at the maximal fluorescence (Fm). In contrast, no change was recorded at the minimal fluorescence (F0). After re-hydration, although water status was fully recovered in both species, stomatal conductance (gs), net photosynthesis (A) and transpiration rate (E) remain with lower values than the well-watered seedlings. P. atlantica was better adapted to drought stress than P. vera. https://doi.org/10.1071/FP23097