An environmentally friendly approach for industrial wastewater treatment and bio-adsorption of heavy metals using Pistacia soft shell (PSS) through flocculation-adsorption process

In this research, the potential application of Pistacia soft shell (PSS) was investigated as a novel bio-based flocculant for pulp and paper wastewater (PPWW) treatment. In line with this, after characterization of the PSS, the removal efficiencies of chemical oxygen demand (COD), turbidity and heavy metals (Cu2+ and Pb2+) from PPWW were investigated with different dosage of PSS. The results were compared with alum as a reference flocculant. In addition, the effect of pH adjustment on the flocculation-adsorption performance of PSS was studied under acidic and alkaline condition. Zeta potential, BET, FTIR and SEM as well as kinetics and isotherm analyses were conducted for mechanistic understanding. According to the results, PSS treatment could remove COD, turbidity, Cu2+ and Pb2+ up to 67%, 87%, 70% and 74%, respectively which were better than alum: 56%, 85%, 31% and 35%. It was observed that, pH adjustment significantly improved the performance of PSS treatment. Maximum removal efficiencies of 92%, 95%, 97% and 98% were achieved for COD, turbidity, Cu2+ and Pb2+, respectively, under optimal condition of using 2 g/L PSS at pH 9. The mechanism analysis revealed that the high removal efficiency of PSS is related to the dual flocculation-adsorption of bridging and sweeping mechanisms. The results of this study suggested PSS as a promising, sustainable and eco-friendly bio-based flocculant and adsorbent for industrial wastewater treatment. https://doi.org/10.1016/j.envres.2023.116595


Long-term intensive management reduced the soil quality of a Carya dabieshanensis forest

The evaluation of soil quality can provide new insights into the sustainable management of forests. This study investigated the effects of three types of forest management intensities (non-management (CK), extensive management (EM), and intensive management (IM)), and five management durations (0, 3, 8, 15, and 20 years) on the soil quality of a Carya dabieshanensis forest. Further, minimum data sets (MDS) and optimized minimum data sets (OMDS) were established to evaluate the soil quality index (SQI). A total of 20 soil indicators representing its physical, chemical, and biological properties were measured for the 0-30 cm layer. Using one-way ANOVA and principal component analysis (PCA), the total data set (TDS), the minimum data set (MDS), and optimized minimum data set (OMDS) were established. The MDS and OMDS contained three (alkali hydrolyzed nitrogen (AN), soil microbial biomass nitrogen (SMBN), and pH) and four (total phosphorus (TP), soil organic carbon (SOC), AN, and bulk density (BD)) soil indicators, respectively. The SQI derived from the OMDS and TDS exhibited a stronger correlation (r = 0.94, p < 0.01), which was suitable for evaluating the soil quality of the C. dabieshanensis forest. The evaluation results revealed that the soil quality was highest during the early stage of intensive management (IM-3), and the SQI of each soil layer was 0.81 ± 0.13, 0.47 ± 0.11, and 0.38 ± 0.07, respectively. With extended management times, the degree of soil acidification increased, and the nutrient content decreased. Compared with the untreated forest land the soil pH, SOC, and TP decreased by 2.64-6.24%, 29.43-33.04%, and 43.63-47.27%, respectively, following 20 years of management, while the SQI of each soil layer decreased to 0.35 ± 0.09, 0.16 ± 0.02 and 0.12 ± 0.06, respectively. In contrast to extensive management, the soil quality deteriorated more rapidly under longer management and intensive supervision. The OMDS established in this study provides a reference for the assessment of soil quality in C. dabieshanensis forests. In addition, it is suggested that the managers of C. dabieshanensis forests should implement measures such as increasing the amount of P-rich organic fertilizer and restoring vegetation to increase soil nutrient resources for the gradual restoration of soil quality. https://doi.org/10.1038/s41598-023-32237-9


Effect of drought stress and subsequent re-watering on the physiology and nutrition of Pistacia vera and Pistacia atlantica

Arid and semi-arid regions are characterised by extreme conditions including drought stress and salinity. These factors profoundly affect the agricultural sector. The objective of this work is to study the effect of drought and re-watering on leaf gas exchange, chlorophyll fluorescence and mineral nutrition in Pistacia vera and Pistacia atlantica. Water stress was applied to individuals of P. vera and P. atlantica for 23days, followed by rehydration for 7days. The results showed a clear reduction in water relations, leaf gas exchange and chlorophyll content in P. vera. Compared to P. vera, P. atlantica maintained less affected water status, total chlorophyll content, leaf gas exchange and chlorophyll fluorescence, stable Zn and Fe proportion, and even elevated K and Cu. The changes in the chlorophyll fluorescence parameter were manifested particularly at the maximal fluorescence (Fm). In contrast, no change was recorded at the minimal fluorescence (F0). After re-hydration, although water status was fully recovered in both species, stomatal conductance (gs), net photosynthesis (A) and transpiration rate (E) remain with lower values than the well-watered seedlings. P. atlantica was better adapted to drought stress than P. vera. https://doi.org/10.1071/FP23097


Nuts and berries from agroforestry systems in temperate regions can form the foundation for a healthier human diet and improved outcomes from diet-related diseases

Agroforestry is a specific type of agroecosystem that includes trees and shrubs with the potential to yield nutrient-rich products that contribute to human health. This paper reviews the literature on the human health benefits of tree nut and berry species commonly associated with agroforestry systems of the United States, considering their potential for preventing certain diet-related diseases. Emphasis is placed on those diseases that are most closely associated with poor outcomes from COVID-19, as they are indicators of confounding health prognoses. Results indicate that tree nuts reduce the risk of coronary heart disease, and walnuts (Juglans species) are particularly effective because of their unique fatty acid profile. Berries that are grown on shrubs have the potential to contribute to mitigation of hypertension, prevention of Type II diabetes, and reduced risk of cardiovascular disease. To optimize human health benefits, plant breeding programs can focus on the traits that enhance the naturally-occurring phytochemicals, through biofortification. Value-added processing techniques should be selected and employed to preserve the phytonutrients, so they are maintained through the point of consumption. Agroforestry systems can offer valuable human health outcomes for common diet-related diseases, in addition to providing many environmental benefits, particularly if they are purposefully designed with that goal in mind. The food system policies in the U.S. might be reoriented to prioritize these food production systems based on the health benefits. https://doi.org/10.1007/s10457-023-00858-8


Dietary Fibers of Tree Nuts Differ in Composition and Distinctly Impact the Fecal Microbiota and Metabolic Outcomes In Vitro

This study aimed to evaluate and compare the effects of dietary fibers (DFs) of commercially important tree nuts (almond, cashew, hazelnut, pistachio, and walnut) on gut microbiota in vitro. Microbial compositions and short-chain fatty acids were determined using 16S rRNA sequencing and gas chromatography (GC), respectively. Neutral and acidic monosaccharides were analyzed using GC/MS and spectrophotometry, respectively. Our results revealed that cashew fibers exhibit higher butyrate formation compared to others. Accordingly, cashew fiber promoted butyric acid-producing bacteria-related operational taxonomic units (OTUs; Butyricimonas and Collinsella) at higher relative abundances. The higher butyrogenic capacity of cashew fiber is mainly attributed to its higher soluble/total DF ratio and remarkably distinct monosaccharide composition. Additionally, nut fibers stimulated family Lachnospiraceae- and Ruminococcaceae-related OTUs. These findings show that although the degree of promotion is nut type-dependent, nut fibers are generally capable of promoting beneficial microbes in the colon, further suggesting that DFs of tree nuts are contributing factors to their health-promoting effects. https://doi.org/10.1021/acs.jafc.3c01415


Peanut-based Rotation Stabilized Diazotrophic Communities and Increased Subsequent Wheat Yield

The introduction of legumes into rotations can improve nitrogen use efficiency and crop yield; however, its microbial mechanism involved remains unclear. This study aimed to explore the temporal impact of peanut introduction on microorganisms related to nitrogen metabolism in rotation systems. In this study, the dynamics of diazotrophic communities in two crop seasons and wheat yields of two rotation systems: winter wheat - summer maize (WM) and spring peanut → winter wheat - summer maize (PWM) in the North China Plain were investigated. Our results showed that peanut introduction increased wheat yield and biomass by 11.6% (p < 0.05) and 8.9%, respectively. Lower Chao1 and Shannon indexes of the diazotrophic communities were detected in soils that sampling in June compared with those sampling in September, although no difference was found between WM and PWM. Principal co-ordinates analysis (PCoA) showed that rotation system significantly changed the diazotrophic community structures (PERMANOVA; p < 0.05). Compared with WM, the genera of Azotobacter, Skermanella, Azohydromonas, Rhodomicrobium, Azospirillum, Unclassified_f_Opitutaceae, and Unclassified_f_Rhodospirillaceae were significantly enriched (p < 0.05) in PWM. Furthermore, rotation system and sampling time significantly influenced soil properties, which significantly correlated with the top 15 genera in relative abundance. Partial least squares path modeling (PLS-PM) analysis further showed that the diazotrophic community diversity (alpha- and beta-diversity) and soil properties (pH, SOC and TN) significantly affected wheat yield. In conclusion, legume inclusion has the potential to stabilize diazotrophic community structure at the temporal scales and increase subsequent crop yield. https://doi.org/10.1007/s00248-023-02254-2


Evaluation of hazelnut production in Türkiye in environment, energy and economy using life cycle assessment approach

The aim of the present study was to evaluate the environmental impacts of hazelnut cultivation in Ordu province of Türkiye, which ranks first in world hazelnut production. Thus, a cradle-to-gate life cycle assessment (LCA) was implemented to analyze the environmental impact potentials determined as acidification potential (AP), eutrophication potential (EP), and global warming potential (GWP). Additionally, energy use efficiency and economic analysis were identified. Data were collected from fifteen farmers cultivating in the same region and performing the same cultural practices by conducting a face-to-face questionnaire during the period of 2019-2020. LCA results showed that all environmental impacts and energy use of hazelnut production in the region were dominated by synthetic fertilizer. According to the results of the economic analysis, human labor had the highest share (52.7 % as a minimum) with 6.2 TRY kg-1 and 5550.0 TRY ha-1, although it was not included in the environmental impact category. Harvesting had the largest share in economic costs, but it was the most challenging cultural practice as it was carried out under difficult conditions (slope up to 70 %, hot weather) and depended only on human labor. This study provides a basis for future studies and recommends solutions for agricultural sustainability in hazelnut production. The foremost step taken should be to use fertilizer according to soil analysis and to encourage organic fertilizer use. Future studies should examine the relationship between fertilizer use and hazelnut yield. Also, the use of manpower tools without fossil fuels could overcome the challenges as an environmentally friendly solution for harvesting. https://doi.org/10.1016/j.scitotenv.2023.164468


Chromosome-scale genome assembly of the rusty patched bumble bee, Bombus affinis (Cresson) (Hymenoptera: Apidae), an endangered North American pollinator

The rusty patched bumble bee, Bombus affinis, is an important pollinator in North America and a federally listed endangered species. Due to habitat loss and large declines in population size, B. affinis is facing imminent extinction unless human intervention and recovery efforts are implemented. To better understand B. affinis biology and population genetic and genomic landscapes, we sequenced and assembled the B. affinis genome from a single haploid male. Whole genome HiFi sequencing on PacBio coupled with HiC sequencing resulted in a complete and highly contiguous contig assembly that was scaffolded into a chromosomal context, resolving 18 chromosomes distributed across the 365.1 Mb assembly. All material for both HiFi and HiC sequencing was derived from a single abdominal tissue segment from the single male. These assembly results, coupled with the minimal amount of tissue destructively sampled, demonstrate methods for generating contiguous and complete genomic resources for a rare and endangered species with limited material available and highlight the importance of sample preservation. Precise methods and applications of these methods are presented for potential applications in other species with similar limitations in specimen availability and curation considerations. https://doi.org/10.1093/g3journal/jkad119


Blue orchard bee (Hymenoptera: Megachilidae) origin and orchard growing region affect female retention at artificial nest sites in cherry orchards

The blue orchard bee, Osmia lignaria Say (Hymenoptera: Megachilidae), is a solitary, cavity-nesting species used for pollinating spring blooming crops. Commercial stocks are sourced from a few locations in the western United States but are sold across the country. However, the existence of local adaptations of these bees is unknown, such as the propensity to nest in nearby provided materials or to disperse broadly beyond release sites. In spring 2019, California- and Utah-sourced blue orchard bees were introduced into cherry orchards in both source and reciprocal states. Nest boxes were placed near (within 78 m) and far (500 m-1 km) from central bee release points. Paint-marked bees were released when floral resources were available. Observations of marked bees at nest boxes were used to evaluate female retention and dispersal pattern. Nesting bee counts in March-blooming California orchards revealed a significant difference in female retention by population source; over twice as many UT bees established nests than did CA bees. Few females were found at far nest sites. In May-blooming Utah orchards, counts of CA and UT bees were similar at near and far nest sites; neither female retention nor dispersal was significantly affected by bee origin. It is concerning that CA females were less likely to be retained in California orchards because the demand for commercial pollination is high for early-blooming California almond and cherry. Our results highlight the need to understand potential consequences of bee origin and their management on pollinator performance and reproduction in target crops. https://doi.org/10.1093/ee/nvad057


Trend Analysis of Different Climate Parameters and Watering Requirements for Hazelnut in Central Italy Related to Climate Change

In this study, the effects of climate change on the irrigation water requirement of hazelnut trees were investigated in Central Italy. The meteorological variables considered were precipitation, temperature, chilling units, and the Standardized Precipitation Index (SPI) in Central Italy. The hydrological variables were the reference evapotranspiration (ET0) and the water requirement based on soil water balance. Climate data were collected from eight meteorological stations for the period 1974–2021, and ET0 was estimated by the Hargreaves and Samani equation. The SPI index was calculated for a four-month time scale corresponding to the hazelnut growing season (April–August). A statistical analysis of the trends of the variables considered was conducted. The results showed an increasing trend for temperature, ET0, and water requirements, while a decreasing trend was shown for the chilling units. No significant trends were detected for precipitation and SPI. https://doi.org/10.3390/horticulturae9050593