Cascading use of macadamia nutshell for production of energy and adsorbents through biomass gasification

This research delves into the viability of implementing macadamia nutshell in a cascading utilization strategy through gasification. The investigation entails a comprehensive scrutiny of the physiochemical attributes of the feedstock, coupled with an in-depth exploration of the transformations in the properties of both gaseous and solid products stemming from gasification under conditions pertinent to industry applications. Remarkably, macadamia nutshell gasification consistently produced syngas with high CO and H2 levels, resulting in an average Lower Heating Value of 13.8 MJ m-3. The characterization of the obtained chars unveiled a porous structure replete with micro-mesopores, attributing to a carbon dioxide adsorption capacity of 223 mg g-1. Surface analysis discerned a diverse array of functional groups and a marked presence of potassium and calcium (up to 31.37 wt% and 4.12 wt%, respectively). These findings bolster the potential of macadamia nutshell for cascading gasification, offering both energy generation and the production of solid adsorbents. The amassed dataset contributes to the realization of waste-free energy production through biomass gasification, thus propelling the progress of sustainable energy technologies.
https://doi.org/10.1016/j.indcrop.2023.117662


How to find alternative crops for climate-resilient regional food production

CONTEXT. Agricultural food production is both affected by and contributing to climate change. At the global scale, agri-food systems are responsible for one-third of total greenhouse gas emissions. With progressing climate change, the risks of crop failure increase. Thus, an urgent need is to reduce emissions from food systems while increasing their resilience to climate change. Enormous untapped potentials to achieve these dual goals lie in transforming agri-food systems towards more diverse, plant-based, and regional food production systems. OBJECTIVE. In this paper, we present an innovative approach for identifying climate-adapted alternative food crops that could (1) help to diversify existing cropping systems and thus increase their climate resilience and can be (2) nutritious elements of plant-based regional diets with reduced emissions. METHODS. The approach builds on the model ecocrop to select food crops that could benefit from regionally projected changes in climate. The model-based analysis is complemented with a literature review to examine the ecocrop results for their plausibility and provide a broader assessment of potentials for cultivation, utilization, and nutritional values of model-selected crops. RESULTS AND CONCLUSIONS. The approach is applied to Switzerland, where we identify eight alternative crops with the potential to increase climate resilience while contributing to healthy human diets of regional consumers with benefits for climate mitigation (almond, pecan, sesame, durum wheat, quinoa, lentil, lupine, and borage). The literature review indicated that the increasing demand for many of these crops suggests great potential for regional marketing of crop products. The results produced in this study provide an initial guide for researchers and innovative farmers interested in experimenting with alternative crops in Switzerland, thus promoting climate-smart food system transformation from the production side. SIGNIFICANCE. Using our unbiased bottom-up screening approach, we identified climate-adapted alternative crops that can provide essential nutrients, cover nutritional gaps in Switzerland, diversify existing production systems, and improve sustainability.
https://doi.org/10.1016/j.agsy.2023.103793


Construction of eco-friendly multifunctional cashew nut shell oil-based waterborne polyurethane network with UV resistance, corrosion resistance, mechanical strength, and transparency

Vegetable oil-based waterborne polyurethane possesses numerous advantages, including its sustainability, environmental friendliness, and economic benefits. Nevertheless, its application is constrained by inferior mechanical properties and a low glass transition temperature. Hereon, the renewable polyols of sorbitan monooleate/cytidine were incorporated into the anionic cashew nut shell oil-based WPU network through molecular structure design. Series of CNSL-based WPU with outstanding UV resistance, mechanical properties, corrosion resistance, and transparency were successfully synthesized. The effects of Ce/SP content on the performance of CNSL-based WPU dispersions and films were investigated. The results demonstrated a remarkable enhancement in the properties of the modified WPU films. Specifically, the tensile strength and Tg were increased from 9.7 MPa to 23.9 MPa and 1.1 °C to 45.8 °C, respectively, while maintaining a toughness of 26 MJ/m−3, which attained or even surpassed the current vegetable oil-based WPU systems. It was confirmed excellent UV resistance within the UVB and UVC spectrums. Furthermore, with the increase in Ce/SP content, the water contact angle of films increased slightly, enhancing its water resistance. The IE of WPU-Ce and WPU-SP films reached 97.93 % and 98.42 % respectively, indicating outstanding corrosion resistance. This work presented novel strategies for the advancement of high-performance bio-based WPU, which held promising potential in diverse areas including coatings, corrosion protection, inks, and wearable applications.
https://doi.org/10.1016/j.porgcoat.2023.108051


Recycling of Hazelnut Husk; from Bio-waste to Phyto-Assisted Synthesis of Silver Nanoparticles

In the present work, green synthesis is utilized in the synthesis of silver nanoparticles with hazelnut (Corylus Colurna) husk which is the outer leaf part of the hazelnut shell and is considered bio-waste. According to transmission electron microscopy and x-ray diffraction analysis, the morphology of the silver nanoparticles synthesized by 0.1 g/mL hazelnut husk extract is found to be spherical with an average diameter of 6.57 nm and possesses ultra-narrow size distribution. UV-visible spectrometry reveals the absorbance peak range between 450–475 nm which is in the range of surface plasmon resonance peak of silver nanoparticles with spherical morphology. Antibacterial properties of the synthesized silver nanoparticles were tested on E. coli and significant antimicrobial activity was found with up to 79 % areal inhibition efficiency. The research revealed that the hazelnut husk extract, a reducing agent used in syntheses with different mass concentrations of hazelnut husk extract, also affects the size of the nanoparticles, allowing for the possibility of controlling their size. The antibacterial properties of silver nanoparticles, synthesized in a spherical form of different sizes, correspondingly increased their effect on bacteria which is observed in the inhibition zone. The synthesis of silver nanoparticles, which can be used in many fields for agriculture, cosmetics, and medical purposes, using plant extract and minimal chemicals is crucial because it affects its toxicity. The synthesis of silver nanoparticles with hazelnut husk not only reduces the chemical waste and toxicity, but it is both easily accessible and helps the environment and sustainability by recycling a normally considered bio-waste by-product of high-value-added crop to a technologically valuable product silver. Moreover, synthesized silver nanoparticles could be an essential part of applications ranging from antibacterial surface treatments to drug delivery systems. https://doi.org/10.1002/slct.202302262


Contract farming and the adoption of sustainable farm practices: Empirical evidence from cashew farmers in Ghana

Contract farming has been shown to increase agricultural productivity and thus welfare of farmers in developing countries. However, studies that look at the potential environmental effects of contract farming remain quite scanty. This is however crucial, since contract farming may contribute to intensification in cultivation of the contracted crops, in terms of area and the intensity of inputs used. This study investigates the impact of participation in contract farming on sustainable farm practices, using a marginal treatment effects (MTEs) approach to account for potential selection bias and heterogeneity across households. The empirical results show significant heterogeneity in the effects of contract farming on the intensity of sustainable farm practice use. In particular, farmers with high propensity to participate in contract farming tend to have low probabilities of using sustainable farm practices. The findings of this study not only provide new insights into the heterogeneous effects of contract farming, but also entry points for further research to address the dual challenge of agriculture to produce sufficient food, while reducing the adverse impact on the environment.
https://doi.org/10.1002/aepp.13212


Application of machine learning to predict of energy use efficiency and damage assessment of almond and walnut production

A study was conducted in Shahrekord city, Iran, focusing on improving the production of almond and walnut crops on rural agricultural lands. The gardeners selected for the study shared similar characteristics and production histories. One of the major challenges in producing these crops was the manual harvesting process, which required a significant amount of human labor in the region. To collect data, questionnaires and face-to-face interviews were conducted. The study used machine learning models, specifically artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models, to predict energy use efficiency and environmental impacts in almond and walnut production. Among the models used, the ANFIS model with a three-level topology was found to be the most accurate in predicting output energy generation and environmental impacts in both almond and walnut production. The R2 values for the testing stage ranged from 0.969 to 0.996 for output energy generation and 0.994 to 0.997 for environmental impacts. The study demonstrated the effectiveness of using machine learning models like ANN and ANFIS in predicting energy use efficiency and environmental impacts in almond and walnut production, which can aid in planning and managing these crops more sustainably and efficiently in the future.

https://doi.org/10.1016/j.indic.2023.100298


An Eco-Friendly Modification of a Walnut Shell Biosorbent for Increased Efficiency in Wastewater Treatment

Herein, we report the performance of some low-cost biosorbents developed by environment-friendly modification of walnut shells. Two types of biosorbents were prepared by ecological modification of walnut shell surfaces: (1) biosorbents obtained by hot water treatment (WSH2O) and (2) biosorbents produced by mercerization (WSNaOH). Different techniques were used to evaluate the morphological, elemental, and structural modification of the biosorbents, by comparison with raw materials. These characterization techniques involved scanning electron microscopy (SEM) coupled with energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy (FTIR). The biosorbents were employed for the removal of methylene blue (MB) and crystal violet (CV) cationic dyes (as model organic pollutants) from aqueous solutions. The kinetic adsorption data mainly followed the pseudo-first-order model. The maximum adsorption capacities of the produced biosorbents ranged from 102 to 110 mg/g and were observed at 330 K. Equilibrium data for adsorption were fitted to Langmuir and Freundlich isotherm models. The calculated values of thermodynamic parameters suggested that the investigated adsorption processes were exergonic (ΔG < 0) and exothermic (ΔH < 0). In addition, a possible valorization of the cost-effective and eco-friendly spent biosorbents was tested by performing secondary adsorption of the anionic dyes.
http://dx.doi.org/10.3390/su15032704


Macadamia Breeding for Reduced Plant Vigor: Progress and Prospects for Profitable and Sustainable Orchard Systems

Vigor control in tree crops plays an important role in increasing orchard efficiency and sustainability. It has enabled high-density plantations to maximize yield efficiency while reducing production costs. Although traditional methods such as frequent hedging and pruning are still used, dwarfing rootstocks and low-vigor cultivars are the most effective and sustainable means of vigor control, as these methods reduce labor and management costs while maintaining yield efficiency. Considerable variation among cultivars and rootstocks for vigor has been identified; however, mechanisms by which rootstocks affect scion vigor in slow-maturing tree crops remain unclear. With the lack of adequate information required for early and rapid selection, breeding programs in tree crops such as macadamia still utilize manual phenotyping, which is laborious, time-consuming, and expensive. Providing insights on emerging technologies that enhance breeding programs via rapid selection, this review summarizes the current state of vigor management and underlying mechanisms of vigor control in tree crops. It provides further understanding of the prospects of applying those techniques in rootstock and scion breeding for low-vigor and yield-efficient cultivars in tree crops, with specific reference to macadamia.
http://dx.doi.org/10.3390/su151914506


Land Suitability Assessment for Pistachio Cultivation Using GIS and Multi-Criteria Decision-Making: A Case Study of Mardin, Turkey

Site selection for pistachio orchards is an important issue for sustainable agricultural policies, crop productivity, agricultural planning, and communities. This study aims to investigate suitable places for pistachio in the Mardin Province (SE Turkey) by considering several variables, such as meteorological data, topographic conditions, economic factors, and soil characteristics, using Geographic Information System (GIS) and Multi-Criteria Decision Analysis. Pistachio farmers, expert opinions, and literature data were used to determine the requirements for pistachio cultivation. Four main assessment criteria (thirteen sub-criteria), sixty value ranges, and fourteen exclusion criteria were determined for the pistachio land suitability assessment. The weighting of the evaluation criteria was calculated using the Analytical Hierarchy Process (AHP). Farmers and experts have stated that meteorological factors are more important than soil, topography, and economic factors. All data were transferred to the GIS environment, and a land suitability map was created using the weighted linear combination method. The results show that Mardin province has very suitable lands for pistachio cultivation. The resulting map determined that the 228,891.59 ha area in Mardin province is very suitable for pistachio. To evaluate the accuracy of the land suitability map generated for pistachio, the Receiver Operating Characteristic (ROC) curve was used. The value of the area under the curve (AUC) was calculated to be 0.806, which indicates that the study is consistent. The created suitability map will be an essential data source for developing sustainable agricultural strategies in the Southeastern Anatolia region.
https://doi.org/10.1007/s10661-023-11899-y


Assessment of Raisins Byproducts for Environmentally Sustainable Use and Value Addition

This study investigated the potential and sustainable use of the biomass derived from various stages of the grape drying process. A total of eleven byproducts, each containing varying organic materials, were produced and subjected to testing. Ultimate analysis, as well as analyses of heating values, chemical composition, lignocellulose composition, total solids concentration and biogas production were performed with the recommended criteria and assessment methods. The results reveal that carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) levels were significantly different among the byproducts. The ash content of byproducts 5–11 ranged from 3.56 to 5.11%, which was lower than the estimated values in the other byproducts. The analysis of higher heating value showed significantly higher calorific values for byproducts 10 and 11 (22.73 ± 0.08 and 22.80 ± 0.07 MJ kg−1, respectively). Byproducts 1–9 had lower sugar content than byproducts 10 and 11 (rejected raisins). Byproducts 5–9 had the lowest lignin content, and there were no significant differences in neutral detergent fiber (NDF) contents between byproducts 1–6. The highest accumulated biogas volume after 40 days was 11.50 NL L−1 of substrate for byproduct group C (byproducts 10 to 11), followed by 11.20 NL L−1 of substrate for byproduct group B (byproducts 5–9) and 9.51 NL L−1 of substrate for byproduct group A (byproducts 1–4). It is concluded that byproducts consisting of biomass derived at different stages of raisin production may be an effective solid fuel and energy source. The amounts of volatile solids in the tested raisin processing byproducts indicated their appropriateness for pyrolysis conversion to a liquid product with high volatile content. https://doi.org/10.3390/agriengineering5030091